Understanding the mechanism for DNA mutations is a key concept in most genetics and microbiology courses. In addition, understanding that most mutations occur prior to exposure to selection is an important yet often difficult concept for students to grasp. We developed an undergraduate laboratory activity on mutation mechanisms based on the classic experiment from Luria and Delbrück.
View Article and Find Full Text PDFEndospore formation follows a complex, highly regulated developmental pathway that occurs in a broad range of Firmicutes. Although Bacillus subtilis has served as a powerful model system to study the morphological, biochemical, and genetic determinants of sporulation, fundamental aspects of the program remain mysterious for other genera. For example, it is entirely unknown how most lineages within the Firmicutes regulate entry into sporulation.
View Article and Find Full Text PDFKinase cascades and the modification of proteins by phosphorylation are major mechanisms for cell signaling and communication, and evolution of these signaling pathways can contribute to new developmental or environmental response pathways. The Saccharomyces cerevisiae kinase Ime2 has been well characterized for its role in meiosis. However, recent studies have revealed alternative functions for Ime2 in both S.
View Article and Find Full Text PDFMeiosis is a highly regulated process in eukaryotic species. The filamentous fungus Neurospora crassa has been shown to be missing homologs of a number of meiotic initiation genes conserved in Saccharomyces cerevisiae, but has three homologs of the well-characterized middle meiotic transcriptional regulator NDT80. In this study, we evaluated the role of all three NDT80 homologs in the formation of female reproductive structures, sexual development, and meiosis.
View Article and Find Full Text PDF