Alcohol use disorder (AUD) is one of the major causes of mortality and morbidity world-wide. It is estimated that 50% of the causes of AUD are heritable. Efforts to determine the genetic determinants governing AUD using genome wide association studies (GWAS) show that the most strongly associated SNPs occur within, or in the vicinity of, genes encoding enzymes that metabolise ethanol.
View Article and Find Full Text PDFCannabinoid receptor-1 (CB1) represents a potential drug target against conditions that include obesity and substance abuse. However, drug trials targeting CB1 (encoded by the CNR1 gene) have been compromised by differences in patient response. Toward addressing the hypothesis that genetic changes within the regulatory regions controlling CNR1 expression contribute to these differences, we characterized the effects of disease-associated allelic variation within a conserved regulatory sequence (ECR1) in CNR1 intron 2 that had previously been shown to modulate cannabinoid response, alcohol intake, and anxiety-like behavior.
View Article and Find Full Text PDFBackground: The rise in global obesity makes it crucial to understand how diet drives obesity-related health conditions, such as premature cognitive decline and Alzheimer's disease (AD). In AD hippocampal-dependent episodic memory is one of the first types of memory to be impaired. Previous studies have shown that in mice fed a high-fat diet (HFD) episodic memory is rapidly but reversibly impaired.
View Article and Find Full Text PDFThe cannabinoid-1 receptor (CB) plays a critical role in a number of biological processes including nutrient intake, addiction and anxiety-related behaviour. Numerous studies have shown that expression of the gene encoding CB1 (CNR1) is highly dynamic with changes in the tissue specific expression of CNR1 associated with brain homeostasis and disease progression. However, little is known of the mechanisms regulating this dynamic expression.
View Article and Find Full Text PDFA high-fat diet induces hypothalamic inflammation in rodents which, in turn, contributes to the development of obesity by eliciting both insulin and leptin resistance. However, the mechanism by which long-chain saturated fatty acids trigger inflammation is still contentious. To elucidate this mechanism, the effect of fatty acids on the expression of the pro-inflammatory cytokines and was investigated in the mHypoE-N42 hypothalamic cell line (N42).
View Article and Find Full Text PDFNeuropeptides and their receptors play a role in physiological responses such as appetite, stress and inflammatory pain. With neuropeptides having such diverse and important physiological roles, knocking-out the genes encoding them, their receptors, parts of their regulatory sequences, or reproducing disease associated polymorphic variants are important steps in studying neuropeptides and how they may contribute to disease. Previously, knock-outs were generated using methods such as targeted homologous recombination in embryonic stem cells but this method is costly and time-consuming.
View Article and Find Full Text PDFSeasonal animals undergo changes in physiology and behavior between summer and winter conditions. These changes are in part driven by a switch in a series of hypothalamic genes under transcriptional control by hormones and, of recent interest, inflammatory factors. Crucial to the control of transcription are histone deacetylases (HDACs), generally acting to repress transcription by local histone modification.
View Article and Find Full Text PDFWe have successfully used comparative genomics to identify putative regulatory elements within the human genome that contribute to the tissue specific expression of neuropeptides such as galanin and receptors such as CB1. However, a previous inability to rapidly delete these elements from the mouse genome has prevented optimal assessment of their function in-vivo. This has been solved using CAS9/CRISPR genome editing technology which uses a bacterial endonuclease called CAS9 that, in combination with specifically designed guide RNA (gRNA) molecules, cuts specific regions of the mouse genome.
View Article and Find Full Text PDFThere can now be little doubt that the cis-regulatory genome represents the largest information source within the human genome essential for health. In addition to containing up to five times more information than the coding genome, the cis-regulatory genome also acts as a major reservoir of disease-associated polymorphic variation. The cis-regulatory genome, which is comprised of enhancers, silencers, promoters, and insulators, also acts as a major functional target for epigenetic modification including DNA methylation and chromatin modifications.
View Article and Find Full Text PDFNon-coding cis-regulatory sequences act as the 'eyes' of the genome and their role is to perceive, organise and relay cellular communication information to RNA polymerase II at gene promoters. The evolution of these sequences, that include enhancers, silencers, insulators and promoters, has progressed in multicellular organisms to the extent that cis-regulatory sequences make up as much as 10% of the human genome. Parallel evidence suggests that 75% of polymorphisms associated with heritable disease occur within predicted cis-regulatory sequences that effectively alter the 'perception' of cis-regulatory sequences or render them blind to cell communication cues.
View Article and Find Full Text PDF