Unlabelled: Inducible nitric oxide synthase (iNOS) activity increases in acute and chronic inflammatory lung diseases. Imaging iNOS expression may be useful as an inflammation biomarker for monitoring lung disease activity. We developed a novel tracer for PET that binds to iNOS in vivo, (18)F-NOS.
View Article and Find Full Text PDFPurpose: We tested whether positron emission tomography (PET) with the caspase-3-targeted isatin analog [(18)F]WC-4-116 could image caspase-3 activation in response to an apoptosis-inducing anticancer therapy.
Procedures: [(18)F]WC-4-116 uptake was determined in etoposide-treated EL4 cells. Biodistribution studies with [(18)F]WC-4-116 and [(18)F]ICMT-18, a non-caspase-3-targeted tracer, as well as [(18)F]WC-4-116 microPET imaging assessed responses in Colo205 tumor-bearing mice treated with death receptor 5 (DR5)-targeted agonist antibodies.
The (R)- and (S)-enantiomers of 2-amino-3-[1-(2-[18F]fluoroethyl)-1H-[1,2,3]triazol-4-yl]propanoic acid (4) were synthesized and evaluated in the rat 9L gliosarcoma brain tumor model using cell uptake assays, biodistribution studies, and micro-positron emission tomography (microPET). The (R)- and (S)-enantiomers of [18F]4 were radiolabeled separately using the click reaction in 57% and 51% decay-corrected yields, respectively. (S)-[18F]4 was a substrate for cationic amino acid transport and, to a lesser extent, system L transport in vitro.
View Article and Find Full Text PDFRecently, a novel method for detection of DNA synthesis has been developed based on the incorporation of 5-ethynyl-2'-deoxyuridine (EdU), a thymidine analogue, into cellular DNA and the subsequent reaction of EdU with a fluorescent azide in a copper-catalyzed [3+2] cycloaddition ("Click" reaction). In the present study, we evaluated this method for studying cell proliferation in the adult central nervous system in comparison with the "gold standard" method of 5-bromo-2'-deoxyuridine (BrdU) staining using two behavioral paradigms, voluntary exercise and restraint stress. Our data demonstrate that the number of EdU-positive cells in the dentate gyrus of the hippocampus (DG) slightly increased in an EdU dose-dependent manner in both the control and voluntary exercise (running) mouse groups.
View Article and Find Full Text PDF