Publications by authors named "Eliza Wiech"

Proteomic analyses have become an essential part of the toolkit of the molecular biologist, given the widespread availability of genomic data and open source or freely accessible bioinformatics software. Tools are available for detecting homologous sequences, recognizing functional domains, and modeling the three-dimensional structure for any given protein sequence, as well as for predicting interactions with other proteins or macromolecules. Although a wealth of structural and functional information is available for many cytoskeletal proteins, with representatives spanning all of the major subfamilies, the majority of cytoskeletal proteins remain partially or totally uncharacterized.

View Article and Find Full Text PDF

Proteomic analyses have become an essential part of the toolkit of the molecular biologist, given the widespread availability of genomic data and open source or freely accessible bioinformatics software. Tools are available for detecting homologous sequences, recognizing functional domains, and modeling the three-dimensional structure for any given protein sequence. Although a wealth of structural and functional information is available for a large number of cytoskeletal proteins, with representatives spanning all of the major subfamilies, the majority of cytoskeletal proteins remain partially or totally uncharacterized.

View Article and Find Full Text PDF

The Sinorhizobium meliloti periplasmic ExoR protein and the ExoS/ChvI two-component system form a regulatory mechanism that directly controls the transformation of free-living to host-invading cells. In the absence of crystal structures, understanding the molecular mechanism of interaction between ExoR and the ExoS sensor, which is believed to drive the key regulatory step in the invasion process, remains a major challenge. In this study, we present a theoretical structural model of the active form of ExoR protein, ExoRm , generated using computational methods.

View Article and Find Full Text PDF

The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae.

View Article and Find Full Text PDF