Introduction: Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells.
View Article and Find Full Text PDFBackground: The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment.
View Article and Find Full Text PDFHeat shock proteins (HSPs) are evolutionarily conserved molecules synthesised by cells exposed to sub-lethal stresses. Acting as molecular chaperones, HSPs protect cells from environmental stress damage by assisting in proper folding and stabilisation of proteins. In addition, they help to sequester severely damaged proteins for degradation.
View Article and Find Full Text PDF