Publications by authors named "Elissa Wp Wong"

Article Synopsis
  • Immune checkpoint blockade (ICB) is effective in tumors with high T cell presence but not in those with an immune-desert microenvironment, which are poorly understood.
  • Inactivation of polycomb-repressive complex 2 (PRC2) components, particularly EED and SUZ12, leads to an immune-desert tumor microenvironment by altering chromatin and reducing immune signaling.
  • Using modified vaccinia virus Ankara (MVA) to enhance immune cell infiltration in tumors lacking PRC2 showed promise in making these tumors more responsive to ICB, suggesting a potential therapeutic approach.
View Article and Find Full Text PDF

Aberrant activation of MAPK signaling leads to the activation of oncogenic transcriptomes. How MAPK signaling is coupled with the transcriptional response in cancer is not fully understood. In 2 MAPK-activated tumor types, gastrointestinal stromal tumor and melanoma, we found that ETV1 and other Pea3-ETS transcription factors are critical nuclear effectors of MAPK signaling that are regulated through protein stability.

View Article and Find Full Text PDF

Adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (formerly called AF-2364), is a potent analog of lonidamine [1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid] known to disrupt germ cell adhesion, most notably elongating and elongated spermatids, in the seminiferous epithelium of adult rat testes and thus, leads to infertility in rats. Since the population of spermatogonia and spermatogonial stem cells (SSCs) in the seminiferous tubules is not significantly reduced by the treatment of rats with adjudin, adjudin-induced infertility is highly reversible, which enables reinitiation of spermatogenesis and germ cell re-population of the voided seminiferous epithelium. Furthermore, adjudin appears to exert its effects at the testis-specific atypical adherens junction (AJ) type known as ectoplasmic specialization (ES), most notably the apical ES at the Sertoli cell-spermatid interface.

View Article and Find Full Text PDF

During spermatogenesis, spermatogonial stem cells, undifferentiated and differentiated spermatogonia, spermatocytes, spermatids and spermatozoa all express specific antigens, yet the functions of many of these antigens remain unexplored. Studies in the past three decades have shown that many of these transiently expressed genes in developing germ cells are proto-oncogenes and oncogenes, which are expressed only in the testis and various types of cancers in humans and rodents. As such, these antigens are designated cancer/testis antigens (CT antigens).

View Article and Find Full Text PDF

Recent studies have demonstrated the presence of a functional axis that coordinates the events of spermiation and blood-testis barrier (BTB) restructuring which take place simultaneously at the opposite ends of the seminiferous epithelium at stage VIII of the epithelial cycle of spermatogenesis in the rat testis. In short, the disruption of the apical ectoplasmic specialization (apical ES) at the Sertoli cell-elongated spermatid interface, which facilitates the release of sperm at spermiation near the tubule lumen, is coordinated with restructuring at the BTB to accommodate the transit of preleptotene spermatocytes across the immunological barrier near the basement membrane. These two events are likely coordinated by a functional axis involving hemidesmosome at the Sertoli cell-basement membrane interface, and it was designated the apical ES-BTB-hemidesmosome axis.

View Article and Find Full Text PDF

The blood-testis barrier (BTB) is a unique ultrastructure in the mammalian testis. Unlike other blood-tissue barriers, such as the blood-brain barrier and the blood-ocular (or blood-retina) barrier which formed by tight junctions (TJ) between endothelial cells of the microvessels, the BTB is constituted by coexisting TJ, basal ectoplasmic specialization (basal ES), desmosomes and gap junctions between adjacent Sertoli cells near the basement membrane of the seminiferous tubule. The BTB also divides the seminiferous epithelium into the apical (or adluminal) and basal compartments so that meiosis I and II and post-meiotic germ cell development can all take place in a specialized microenvironment in the apical compartment behind the BTB.

View Article and Find Full Text PDF

Sphingomyelin synthase (SMS) is a cellular enzyme that catalyzes de novo synthesis of sphingomyelin (SM), which is a vital lipid component of cell membranes. Both members of the SMS family, SMS1 and SMS2, are found in mammalian testes and they are located in distinctive subcellular compartments, with SMS1 in the Golgi apparatus and SMS2 in the plasma membrane. At present, the precise function of SMS in the testis remains unknown.

View Article and Find Full Text PDF