Intensive care units (ICUs) may disrupt sleep. Quantitative ICU studies of concurrent and continuous sound and light levels and timings remain sparse in part due to the lack of ICU equipment that monitors sound and light. Here, we describe sound and light levels across three adult ICUs in a large urban United States tertiary care hospital using a novel sensor.
View Article and Find Full Text PDFTo measure sleep in the intensive care unit (ICU), full polysomnography is impractical, while activity monitoring and subjective assessments are severely confounded. However, sleep is an intensely networked state, and reflected in numerous signals. Here, we explore the feasibility of estimating conventional sleep indices in the ICU with heart rate variability (HRV) and respiration signals using artificial intelligence methods We used deep learning models to stage sleep with HRV (through electrocardiogram) and respiratory effort (through a wearable belt) signals in critically ill adult patients admitted to surgical and medical ICUs, and in age and sex-matched sleep laboratory patients We studied 102 adult patients in the ICU across multiple days and nights, and 220 patients in a clinical sleep laboratory.
View Article and Find Full Text PDFPurpose: Sleep-disordered breathing may be induced by, exacerbate, or complicate recovery from critical illness. Disordered breathing during sleep, which itself is often fragmented, can go unrecognized in the intensive care unit (ICU). The objective of this study was to investigate the prevalence, severity, and risk factors of sleep-disordered breathing in ICU patients using a single respiratory belt and oxygen saturation signals.
View Article and Find Full Text PDFStudy Objectives: Alterations in sleep spindles have been linked to cognitive impairment. This finding has contributed to a growing interest in identifying sleep-based biomarkers of cognition and neurodegeneration, including sleep spindles. However, flexibility surrounding spindle definitions and algorithm parameter settings present a methodological challenge.
View Article and Find Full Text PDFObjective: Sleep-related respiratory abnormalities are typically detected using polysomnography. There is a need in general medicine and critical care for a more convenient method to detect sleep apnea automatically from a simple, easy-to-wear device. The objective was to detect abnormal respiration and estimate the Apnea-Hypopnea Index (AHI) automatically with a wearable respiratory device with and without SpO signals using a large (n = 412) dataset serving as ground truth.
View Article and Find Full Text PDF