Objects are fundamental to scene understanding. Scenes are defined by embedded objects and how we interact with them. Paradoxically, scene processing in the brain is typically discussed in contrast to object processing.
View Article and Find Full Text PDFContextual associations facilitate object recognition in human vision. However, the role of context in artificial vision remains elusive as does the characteristics that humans use to define context. We investigated whether contextually related objects (bicycle-helmet) are represented more similarly in convolutional neural networks (CNNs) used for image understanding than unrelated objects (bicycle-fork).
View Article and Find Full Text PDFRapid visual perception is often viewed as a bottom-up process. Category-preferred neural regions are often characterized as automatic, default processing mechanisms for visual inputs of their categorical preference. To explore the sensitivity of such regions to top-down information, we examined three scene-preferring brain regions, the occipital place area (OPA), the parahippocampal place area (PPA), and the retrosplenial complex (RSC), and tested whether the processing of outdoor scenes is influenced by the functional contexts in which they are seen.
View Article and Find Full Text PDFThe human visual cortex is organized in a hierarchical manner. Although previous evidence supporting this hypothesis has been accumulated, specific details regarding the spatiotemporal information flow remain open. Here we present detailed spatiotemporal correlation profiles of neural activity with low-level and high-level features derived from an eight-layer neural network pretrained for object recognition.
View Article and Find Full Text PDFVision science, particularly machine vision, has been revolutionized by introducing large-scale image datasets and statistical learning approaches. Yet, human neuroimaging studies of visual perception still rely on small numbers of images (around 100) due to time-constrained experimental procedures. To apply statistical learning approaches that include neuroscience, the number of images used in neuroimaging must be significantly increased.
View Article and Find Full Text PDFVisual recognition requires connecting perceptual information with contextual information and existing knowledge. The ventromedial temporal cortex (VTC), including the medial fusiform, has been linked with object recognition, paired associate learning, contextual processing, and episodic memory, suggesting that this area may be critical in connecting visual processing, context, knowledge and experience. However, evidence for the link between associative processing, episodic memory, and visual recognition in VTC is currently lacking.
View Article and Find Full Text PDFUnlabelled: Developmental topographic disorientation (DTD) is a life-long condition in which affected individuals are severely impaired in navigating around their environment. Individuals with DTD have no apparent structural brain damage on conventional imaging and the neural mechanisms underlying DTD are currently unknown. Using functional and diffusion tensor imaging, we present a comprehensive neuroimaging study of an individual, J.
View Article and Find Full Text PDFHow are complex visual entities such as scenes represented in the human brain? More concretely, along what visual and semantic dimensions are scenes encoded in memory? One hypothesis is that global spatial properties provide a basis for categorizing the neural response patterns arising from scenes. In contrast, non-spatial properties, such as single objects, also account for variance in neural responses. The list of critical scene dimensions has continued to grow--sometimes in a contradictory manner--coming to encompass properties such as geometric layout, big/small, crowded/sparse, and three-dimensionality.
View Article and Find Full Text PDFHow do we understand the complex patterns of neural responses that underlie scene understanding? Studies of the network of brain regions held to be scene-selective-the parahippocampal/lingual region (PPA), the retrosplenial complex (RSC), and the occipital place area (TOS)-have typically focused on single visual dimensions (e.g., size), rather than the high-dimensional feature space in which scenes are likely to be neurally represented.
View Article and Find Full Text PDFThe anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD) signals.
View Article and Find Full Text PDFThe parahippocampal cortex (PHC) has been associated with many cognitive processes, including visuospatial processing and episodic memory. To characterize the role of PHC in cognition, a framework is required that unifies these disparate processes. An overarching account was proposed whereby the PHC is part of a network of brain regions that processes contextual associations.
View Article and Find Full Text PDFMagnetic resonance imaging enables the noninvasive mapping of both anatomical white matter connectivity and dynamic patterns of neural activity in the human brain. We examine the relationship between the structural properties of white matter streamlines (structural connectivity) and the functional properties of correlations in neural activity (functional connectivity) within 84 healthy human subjects both at rest and during the performance of attention- and memory-demanding tasks. We show that structural properties, including the length, number, and spatial location of white matter streamlines, are indicative of and can be inferred from the strength of resting-state and task-based functional correlations between brain regions.
View Article and Find Full Text PDFNeuroimaging is being used increasingly to make inferences about an individual. Yet, those inferences are often confounded by the fact that topographical patterns of task-related brain activity can vary greatly from person to person. This study examined two factors that may contribute to the variability across individuals in a memory retrieval task: individual differences in cognitive style and individual differences in encoding strategy.
View Article and Find Full Text PDF