Publications by authors named "Elissa L Wong"

Fetal alcohol spectrum disorder patients suffer from many cognitive disabilities. These include impaired auditory, visual, and tactile sensory information processing, making it more difficult for these patients to learn to navigate social scenarios. Rodent studies have shown that alcohol exposure during the brain growth spurt (BGS) can lead to acute neuronal apoptosis and an immunological response by microglia in the somatosensory cortex.

View Article and Find Full Text PDF

Microglia are the innate immune cells of the central nervous system and are also important participants in normal development and synaptic plasticity. Here, we demonstrate that the microglia of the mouse cerebellum represent a unique population compared to cortical microglia. Microglia are more sparsely distributed within the cerebellum and have a markedly less ramified morphology compared to their cortical counterparts.

View Article and Find Full Text PDF

Fetal alcohol spectrum disorder (FASD), caused by gestational ethanol (EtOH) exposure, is one of the most common causes of non-heritable and life-long mental disability worldwide, with no standard treatment or therapy available. While EtOH exposure can alter the function of both neurons and glia, it is still unclear how EtOH influences brain development to cause deficits in sensory and cognitive processing later in life. Microglia play an important role in shaping synaptic function and plasticity during neural circuit development and have been shown to mount an acute immunological response to EtOH exposure in certain brain regions.

View Article and Find Full Text PDF

Alcohol exposure during gestation can lead to severe defects in brain development and lifelong physical, behavioral and learning deficits that are classified under the umbrella term fetal alcohol spectrum disorder (FASD). Sadly, FASD is diagnosed at an alarmingly high rate, affecting 2%-5% of live births in the United States, making it the most common non-heritable cause of mental disability. Currently, no standard therapies exist that are effective at battling FASD symptoms, highlighting a pressing need to better understand the underlying mechanisms by which alcohol affects the developing brain.

View Article and Find Full Text PDF

Background: Neuronal plasticity deficits are thought to underlie abnormal neurodevelopment in fetal alcohol spectrum disorders and in animal models of this condition. Previously, we found that alcohol exposure during a period that is similar to the last months of gestation in humans disrupts ocular dominance plasticity (ODP), as measured in superficial cortical layers. We hypothesize that exposure to alcohol can differentially affect the potentiation and depression of responses that are necessary for activity-dependent sprouting and pruning of neuronal networks.

View Article and Find Full Text PDF