Huntington's disease (HD) is a fatal, hereditary neurodegenerative disorder that predominantly affects striatal medium-sized spiny neurons and cortical pyramidal neurons (CPNs). It has been proposed that perturbations in Ca homeostasis could play a role in CPN alterations. To test this hypothesis, we used the R6/2 mouse model of juvenile HD at different stages of disease progression; presymptomatic, early symptomatic, and late symptomatic.
View Article and Find Full Text PDFHuntington's disease (HD) is a progressive, fatal neurodegenerative disorder characterized by motor, cognitive, and psychiatric disturbances. There is no known cure for HD, but its progressive nature allows for early therapeutic intervention. Currently, much of the research has focused on the striatum, however, there is evidence suggesting that disruption of thalamocortical circuits could underlie some of the early symptoms of HD.
View Article and Find Full Text PDFDespite substantial recent progress in network neuroscience, the impact of stroke on the distinct features of reorganizing neuronal networks during recovery has not been defined. Using a functional connections-based approach through 2-photon in vivo calcium imaging at the level of single neurons, we demonstrate for the first time the functional connectivity maps during motion and nonmotion states, connection length distribution in functional connectome maps and a pattern of high clustering in motor and premotor cortical networks that is disturbed in stroke and reconstitutes partially in recovery. Stroke disrupts the network topology of connected inhibitory and excitatory neurons with distinct patterns in these 2 cell types and in different cortical areas.
View Article and Find Full Text PDFHuntington's disease (HD) is a neurodegenerative disorder characterized by involuntary movements, cognitive deficits, and psychiatric disturbances. Although evidence indicates that projections from motor cortical areas play a key role in the development of dysfunctional striatal activity and motor phenotype, little is known about the changes in cortical microcircuits and their role in the development of the HD phenotype. Here we used two-photon laser-scanning microscopy to evaluate network dynamics of motor cortical neurons in layers II/III in behaving transgenic R6/2 and knock-in Q175+/- mice.
View Article and Find Full Text PDFElectrophysiological and cell imaging techniques are powerful tools for understanding alterations in neuronal activity in Huntington's disease (HD), a fatal neurological disorder caused by an expansion of CAG repeats in the HTT gene. Changes in neuronal activity often precede the behavioral manifestations of HD, therefore, understanding the electrophysiology of HD is critical for identifying potential prodromal markers and therapeutic targets. This chapter outlines the basic methodology behind four major electrophysiological and imaging techniques used in HD mouse models: patch clamp recordings, optogenetics, in vivo electrophysiology, and Ca imaging, as well as some of the advancements in HD research using each of these techniques.
View Article and Find Full Text PDFA major focus in development of novel therapies for Huntington's disease (HD) is identification of treatments that reduce the burden of mutant (mHTT) protein in the brain. In order to identify and test the efficacy of such therapies, it is essential to have biomarkers that are sensitive to the effects of mHTT on brain function to determine whether the intervention has been effective at preventing toxicity in target brain systems before onset of clinical symptoms. Ideally, such biomarkers should have a plausible physiologic basis for detecting the effects of mHTT, be measureable both in preclinical models and human studies, be practical to measure serially in clinical trials, and be reliably measurable in HD gene expansion carriers (HDGECs), among other features.
View Article and Find Full Text PDFNeurobiol Learn Mem
November 2014
This review describes the role of cytokines and their downstream signaling cascades on the modulation of learning and memory. Immune proteins are required for many key neural processes and dysregulation of these functions by systemic inflammation can result in impairments of memory that persist long after the resolution of inflammation. Recent research has demonstrated that manipulations of individual cytokines can modulate learning, memory, and synaptic plasticity.
View Article and Find Full Text PDFThe Akt kinase is a serine/threonine protein kinase that has been implicated in mediating a variety of biological responses, is associated with a poor pathophenotype in breast carcinoma, and is involved in hormone and chemotherapy resistance, including resistance to the antiestrogen, tamoxifen. Akt promotes cell survival by phosphorylating and inactivating proapoptotic proteins and increasing the transcription of survival genes. To explore the role that specific components of the Akt kinase pathway play in the cellular response to tamoxifen, we transfected MCF-7 cells with an expression plasmid for a constitutively active Akt.
View Article and Find Full Text PDFThe Akt kinase is a serine/threonine protein kinase that has been implicated in mediating a variety of biological responses. Studies show that high Akt activity in breast carcinoma is associated with a poor pathophenotype, as well as hormone and chemotherapy resistance. Additionally, high Akt activity is associated with other features of poor prognosis.
View Article and Find Full Text PDF