Although organometallic porous polymer networks are recognized as promising heterogeneous catalysts, the relationship between ligand/monomer geometry and network parameters is usually not well understood due to the lack of atom-resolved characterization methods for the amorphous network matrix. In this work, a series of copper(II) salen-type metal complexes was synthesized, using - and -1,2-diaminocyclohexane segments, and thoroughly characterized by single-crystal X-ray diffraction and solution- and solid-state NMR spectroscopy. Terminal ethynyl groups of the complexes were then transformed into polyacetylene chains by coordination chain-growth homopolymerization, resulting in highly porous (458-655 m g) organometallic polymer networks with a copper(II) ion content of about 12 wt%.
View Article and Find Full Text PDFTwo series of hyper-cross-linked microporous polyacetylene networks containing either -[CH=C(CH=O)]- or -[CH=C(CHOH)]- monomeric units are reported. Networks are prepared by chain-growth copolymerization of acetal-protected propargyl aldehyde and acetal-protected propargyl alcohol with a 1,3,5-triethynylbenzene cross-linker followed by hydrolytic deprotection/detemplating. Deprotection not only liberates reactive CH=O and CHOH groups in the networks but also modifies the texture of the networks towards higher microporosity and higher specific surface area.
View Article and Find Full Text PDFNew hyper-cross-linked porous organic polymers (POPs) with a high content of pyridine segments (7.86 mmol pyridine g ), and a micro/mesoporous texture are reported. The networks are achieved by the chain-growth homopolymerization of 2,6- and 3,5-diethynylpyridines.
View Article and Find Full Text PDFHeterogeneous catalysts based on materials with permanent porosity are of great interest owing to their high specific surface area, easy separation, recovery, and recycling ability. Additionally, porous polymer catalysts (PPCs) allow us to tune catalytic activity by introducing various functional centres. This study reports the preparation of PPCs with a permanent micro/mesoporous texture and a specific surface area S of up to 1000 m g active in acid-catalyzed reactions, namely aldehyde and ketone acetalization and carboxylic acid esterification.
View Article and Find Full Text PDFThe aim of the study was to compare the adsorption ability of two adsorbent materials, namely diosmectite and activated charcoal towards selected model compounds that are most commonly involved in acute intoxication. Eleven model compounds were selected: acetylsalicylic acid, α-amanitin, amlodipine, digoxin, phenobarbital, ibuprofen, imipramine, carbamazepine, oxazepam, promethazine, and theophylline. Of the tested compounds, promethazine and imipramine were the most effectively adsorbed to diosmectite.
View Article and Find Full Text PDFThe presented report focuses on an in-depth detailed characterization of immobilized methyltrioxorhenium (MTO), giving catalysts with a wide spectra of utilization. The range of mesoporous materials with different SiO₂/Al₂O₃ ratios, namely mesoporous alumina (MA), aluminosilicates type Siral (with Al content 60%-90%) and MCM-41, were used as supports for immobilization of MTO. The tested support materials (aluminous/siliceous) exhibited high surface area, well-defined regular structure and narrow pore size distribution of mesopores, and therefore represent excellent supports for the active components.
View Article and Find Full Text PDF