Thioredoxin 2 (TXN2; also known as Trx2) is a small mitochondrial redox protein essential for the control of mitochondrial reactive oxygen species homeostasis, apoptosis regulation and cell viability. Exome sequencing in a 16-year-old adolescent suffering from an infantile-onset neurodegenerative disorder with severe cerebellar atrophy, epilepsy, dystonia, optic atrophy, and peripheral neuropathy, uncovered a homozygous stop mutation in TXN2. Analysis of patient-derived fibroblasts demonstrated absence of TXN2 protein, increased reactive oxygen species levels, impaired oxidative stress defence and oxidative phosphorylation dysfunction.
View Article and Find Full Text PDFInt J Biochem Cell Biol
June 2015
For more than 50 years, reactive oxygen species have been considered as harmful agents, which can attack proteins, lipids or nucleic acids. In order to deal with reactive oxygen species, there is a sophisticated system developed in mitochondria to prevent possible damage. Indeed, increased reactive oxygen species levels contribute to pathomechanisms in several human diseases, either by its impaired defense system or increased production of reactive oxygen species.
View Article and Find Full Text PDFBackground: Sengers syndrome is an autosomal recessive condition characterized by congenital cataract, hypertrophic cardiomyopathy, skeletal myopathy and lactic acidosis. Mutations in the acylglycerol kinase (AGK) gene have been recently described as the cause of Sengers syndrome in nine families.
Methods: We investigated the clinical and molecular features of Sengers syndrome in seven new families; five families with the severe and two with the milder form.
Overproduction of reactive oxygen species (ROS) has been implicated in a range of pathologies. Mitochondrial flavin dehydrogenases glycerol-3-phosphate dehydrogenase (mGPDH) and succinate dehydrogenase (SDH) represent important ROS source, but the mechanism of electron leak is still poorly understood. To investigate the ROS production by the isolated dehydrogenases, we used brown adipose tissue mitochondria solubilized by digitonin as a model.
View Article and Find Full Text PDFMitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable.
View Article and Find Full Text PDF