The transient receptor potential channel TRPC6 is a non-selective cation channel which modulates the calcium level in eukaryotic cells (including sensory receptor cells) in response to external signals. Calmodulin (CaM) is a ubiquitously expressed Ca(2+) binding protein that is an important mediator of Ca(2+)-dependent regulation of the TRPC6 channel. One CaM binding site was identified within the C-tail of TRPC6.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2008
Calmodulin (CaM) is known to play an important role in the regulation of TRP channels activity. Although it has been reported that CaM binds to the C-terminus of TRPV1 (TRPV1-CT), no classic CaM-binding motif was found in this region. In this work, we explored this unusual TRPV1 CaM-binding motif in detail and found that five residues from a putative CaM-binding motif are important for TRPV1-CT's binding to CaM, with arginine R785 being the most essential residue.
View Article and Find Full Text PDFMelatonin functions as an essential regulator of various physiological processes in all vertebrate species. In mammals, two G protein-coupled melatonin receptors (GPCR) mediate some melatonin's actions: MT1 and MT2. Transmembrane domains (TM) of most GPCRs contain a set of highly conserved proline residues that presumably play important structural and functional roles.
View Article and Find Full Text PDFTransient receptor potential channel vanilloid receptor subunit 1 (TRPV1) is a thermosensitive cation channel activated by noxious heat as well as a wide range of chemical stimuli. Although ATP by itself does not directly activate TRPV1, it was shown that intracellular ATP increases its activity by directly interacting with the Walker A motif residing on the C-terminus of TRPV1. In order to identify the amino acid residues that are essential for the binding of ATP to the TRPV1 channel, we performed the following point mutations of the Walker A motif: P732A, D733A, G734A, K735A, D736A, and D737A.
View Article and Find Full Text PDF