Experimental (research-based) and non-research-based watershed monitoring programs often differ with respect to sampling frequency, monitored variables, and monitoring objectives. Isotopic variables, which are more commonly incorporated in research-based programs, can provide an indication of water sources and the transit time of water in a catchment. These variables may be a valuable complement to traditional water quality monitoring variables and have the potential to support improved hydrologic process-related insights from long term monitoring programs that typically have low resolution sampling.
View Article and Find Full Text PDFNutrient imbalance in groundwater and surface water resources can have severe implications on human and aquatic life, including contamination of drinking water sources and the degradation of ecosystems. A field-based watershed-scale study was completed to investigate nutrient dynamics and hydrologic processes in an agriculturally-dominant clay plain system within the Great Lakes Basin. Spatial and temporal variations of nitrogen and phosphorus were examined by sampling groundwater and surface water regularly over a period of one year (June 2017 to July 2018) for nutrients including nitrate, soluble reactive phosphorus, total dissolved phosphorus and total reactive phosphorus.
View Article and Find Full Text PDF