Publications by authors named "Eliseo Recio"

Leishmania spp. is a protozoan parasite and the causative agent of leishmaniasis. Thymidine kinase (TK) catalyses the transfer of the γ-phosphate of ATP to 2'-deoxythymidine (dThd) forming thymidine monophosphate (dTMP).

View Article and Find Full Text PDF

Previously we have shown that trityl and diphenyl deoxyuridine derivatives and their acyclic analogues can inhibit Plasmodium falciparum dUTPase (PfdUTPase). We report the synthesis of conformationally restrained amide derivatives as inhibitors PfdUTPase, including both acyclic and cyclic examples. Activity was dependent on the orientation and location of the amide constraining group.

View Article and Find Full Text PDF

A chemical method for the efficient destruction of 2,4,6-trichloroanisole (TCA) and pentachloroanisole (PCA) in aqueous solutions by using hydrogen peroxide as an oxidant catalyzed by molybdate ions in alkaline conditions was developed. Under optimal conditions, more than 80.0% TCA and 75.

View Article and Find Full Text PDF

Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) is a potential drug target for malaria. We previously reported some 5'-tritylated deoxyuridine analogues (both cyclic and acyclic) as selective inhibitors of the Plasmodium falciparum dUTPase. Modelling studies indicated that it might be possible to replace the trityl group with a diphenyl moiety, as two of the phenyl groups are buried, whereas the third is exposed to solvent.

View Article and Find Full Text PDF

Filamentous fungi produce an impressive variety of secondary metabolites; many of them have important biological activities. The biosynthesis of these secondary metabolites is frequently induced by plant-derived external elicitors and appears to also be regulated by internal inducers, which may work in a way similar to that of bacterial autoinducers. The biosynthesis of penicillin in Penicillium chrysogenum is an excellent model for studying the molecular mechanisms of control of gene expression due to a good knowledge of the biochemistry and molecular genetics of β-lactam antibiotics and to the availability of its genome sequence and proteome.

View Article and Find Full Text PDF

We have previously identified a series of triphenylmethane derivatives of deoxyuridine with antimalarial activity in vitro which selectively inhibit Plasmodium falciparum deoxyuridine triphosphate nucleotidohydrolase (PfdUTPase) compared to the human enzyme. The crystal structure of PfdUTPase in complex with one of these inhibitors suggested that the triphenylmethane derivative was selective due to a series of interactions between the trityl group and the side chains of residues Phe(46), Ile(117) and Lys(96) located in a hydrophobic pocket distinct from the phosphate binding site. Here we show by site-directed mutagenesis that the hydrophobic nature of the trityl binding site and in particular aromatic interactions established between the inhibitor and residue Phe(46) contribute significantly to the binding of uracil-based derivatives containing trityl groups in the 5'-position.

View Article and Find Full Text PDF

Thirteen species of white-rot fungi tested have been shown to efficiently biodegrade 1 mM 2,4,6-trichloroanisole (2,4,6-TCA) in liquid cultures. The maximum biodegradation rate (94.5% in 10-day incubations) was exhibited by a Phlebia radiata strain.

View Article and Find Full Text PDF

The biodegradation rate of chlorophenols in the environment seems to be limited by a competitive mechanism of O-methylation which produces chloroanisoles with a high potential of being bioconcentrated in living organisms. In this work we report for the first time the isolation of three soil bacterial strains able to efficiently degrade 2,4,6-trichloroanisole (2,4,6-TCA). These strains were identified as Xanthomonas retroflexus INBB4, Pseudomonas putida INBP1 and Acinetobacter radioresistens INBS1.

View Article and Find Full Text PDF

The gene cluster responsible for pimaricin biosynthesis in Streptomyces natalensis contains a cholesterol oxidase-encoding gene (pimE) surrounded by genes involved in pimaricin production. Gene-inactivation and -complementation experiments revealed that pimE encodes a functional cholesterol oxidase and, surprisingly, that it is also involved in pimaricin biosynthesis. This extracellular enzyme was purified from S.

View Article and Find Full Text PDF

The biosynthesis of the antifungal pimaricin in Streptomyces natalensis is very sensitive to phosphate regulation. Concentrations of inorganic phosphate above 1mM drastically reduced pimaricin production. At 10mM phosphate, expression of all the pimaricin biosynthesis (pim) genes including the pathway-specific positive regulator pimR is fully repressed.

View Article and Find Full Text PDF

Production of pimaricin by Streptomyces natalensis ATCC 27448 is elicited by the PI-factor, an autoinducer secreted by the producer strain during the rapid growth phase. Exogenous PI-factor restored pimaricin production in a mutant strain npi287 defective in PI-factor biosynthesis. During purification of the PI-factor, a second pimaricin-inducing fraction different from PI-factor was isolated from the culture broth of wild-type S.

View Article and Find Full Text PDF

A chemically novel autoinducer (PI factor) has been purified from cultures of the pimaricin producer Streptomyces natalensis ATCC27448. The chemical structure of the PI molecule was identified as 2,3-diamino-2,3-bis (hydroxymethyl)-1,4-butanediol. Pimaricin biosynthesis in S.

View Article and Find Full Text PDF

Three genes from the aminoethoxyvinylglycine (AVG)-producing Streptomyces sp. NRRL 5331 involved in threonine biosynthesis, hom, thrB and thrC, encoding homoserine dehydrogenase (HDH), homoserine kinase (HK) and threonine synthase (TS), respectively, have been cloned and sequenced. The hom and thrC genes appear to be organized in a bicistronic operon as deduced by disruption experiments.

View Article and Find Full Text PDF