Publications by authors named "Elise Wright"

i-Motifs (iMs), are secondary structures formed in cytosine-rich DNA sequences and are involved in multiple functions in the genome. Although putative iM forming sequences are widely distributed in the human genome, the folding status and strength of putative iMs vary dramatically. Much previous research on iM has focused on assessing the iM folding properties using biophysical experiments.

View Article and Find Full Text PDF

The functionalization of emulsion-templated porous polymers (polyHIPEs) utilizing modern and efficient chemistries is an important avenue for tailoring the properties of these scaffolds for specific and specialized applications. Herein, tetrazole photoclick chemistry is utilized for the efficient functionalization of polyHIPEs synthesized from various monomer systems and polymerization chemistries. Using both radical polymerization and thiol-ene polymerization, polyHIPEs with well-defined, interconnected open-cell morphologies are synthesized with tetrazole concentrations ranging from 0 to 5 w/v %, with the pore diameters ranging from 3 to 24 μm.

View Article and Find Full Text PDF

i-Motifs are widely used in nanotechnology, play a part in gene regulation and have been detected in human nuclei. As these structures are composed of cytosine, they are potential sites for epigenetic modification. In addition to 5-methyl- and 5-hydroxymethylcytosine modifications, recent evidence has suggested biological roles for 5-formylcytosine and 5-carboxylcytosine.

View Article and Find Full Text PDF

Both 5-aza-2'-deoxycytidine (decitabine) and its primary breakdown product, 2'-deoxyriboguanylurea (GuaUre-dR), have been shown to act as mutagens and epimutagens that cause replication stress and alter both DNA methylation and gene expression patterns. As cytosine analogues, both are expected to be preferentially incorporated into regions of GC skew where runs of cytosine residues are sequestered on one strand and guanine residues on the other. Given that such regions have been identified as sites with the potential for effects on gene expression and replication stress linked to formation of alternative DNA secondary structures, it is of interest to determine the influence that these base analogues might have on the stability of structures of this kind.

View Article and Find Full Text PDF

i-Motifs are alternative DNA secondary structures formed in cytosine-rich sequences. Particular examples of these structures, traditionally assumed to be stable only at acidic pH, have been found to form under near-physiological conditions. To determine the potential impact of these structures on physiological processes, investigation of sequences with the capacity to fold under physiological conditions is required.

View Article and Find Full Text PDF

There are hundreds of ligands which can interact with G-quadruplex DNA, yet very few which target i-motif. To appreciate an understanding between the dynamics between these structures and how they can be affected by intervention with small molecule ligands, more i-motif binding compounds are required. Herein we describe how the drug mitoxantrone can bind, induce folding of and stabilise i-motif forming DNA sequences, even at physiological pH.

View Article and Find Full Text PDF

i-Motif DNA structures have previously been utilised for many different nanotechnological applications, but all have used changes in pH to fold the DNA. Herein we describe how copper(II) cations can alter the conformation of i-motif DNA into an alternative hairpin structure which is reversible by chelation with EDTA.

View Article and Find Full Text PDF

Increasing numbers of DNA structures are being revealed using biophysical, spectroscopic and genomic methods. The diversity of transition metal complexes is also growing, as the unique contributions that transition metals bring to the overall structure of metal complexes depend on the various coordination numbers, geometries, physiologically relevant redox potentials, as well as kinetic and thermodynamic characteristics. The vast range of ligands that can be utilised must also be considered.

View Article and Find Full Text PDF

Many clinically available anticancer compounds are designed to target DNA. This commonality of action often yields overlapping cellular response mechanisms and can thus detract from drug efficacy. New compounds are required to overcome resistance mechanisms that effectively neutralise compounds like cisplatin and those with similar chemical structures.

View Article and Find Full Text PDF

Effective proteome analyses are based on interplay between resolution and detection. It had been claimed that resolution was the main factor limiting the use of two-dimensional gel electrophoresis. Improved protein detection now indicates that this is unlikely to be the case.

View Article and Find Full Text PDF

The large-scale resolution and detection of proteins from complex native mixtures is fundamental to quantitative proteomic analyses. Comprehensive analyses depend on careful tissue handling and quantitative protein extraction and assessment. To most effectively link these analyses with an understanding of underlying molecular mechanisms, it is critical that all protein types - isoforms, splice variants and those with functionally important PTMs - are quantitatively extracted with high reproducibility.

View Article and Find Full Text PDF

Health professionals working with children and their families are often required by law to report to governmental authorities any reasonable suspicion of child abuse and/or neglect. Extant research has pointed toward various barriers to reporting, with scant attention to positive processes to support the reporting process. This paper focuses on the context for mandatory reporting and evidence-informed practice for supporting a more structured and purposeful process of mandatory reporting.

View Article and Find Full Text PDF

Background: Little is known about functional outcomes of ankle arthroplasty compared with arthrodesis. This study compared pre-surgical and post-surgical gait measures in both patient groups.

Methods: Eighteen patients with end-stage ankle arthritis participated in an ongoing longitudinal study (pre-surgery, 12 months post-surgery) involving gait analysis, assessment of pain and physical function.

View Article and Find Full Text PDF

Many women continue to consume low to moderate quantities of alcohol during pregnancy, which can result in the variable neurobehavioural effects in the absence of physiological abnormalities that characterize fetal alcohol spectrum disorders (FASD). Previously, we reported that a mouse model for FASD based on voluntary maternal ethanol consumption throughout gestation resulted in offspring that showed mild developmental delay, anxiety-related traits, and deficits in spatial learning. Here, we extend this model by evaluating the gene expression changes that occur in the adult brain of C57BL/6J mice prenatally exposed to ethanol via maternal preference drinking.

View Article and Find Full Text PDF

Proteomics research relies heavily on visualization methods for detection of proteins separated by polyacrylamide gel electrophoresis. Commonly used staining approaches involve colorimetric dyes such as Coomassie Brilliant Blue, fluorescent dyes including Sypro Ruby, newly developed reactive fluorophores, as well as a plethora of others. The most desired characteristic in selecting one stain over another is sensitivity, but this is far from the only important parameter.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used a mouse model to study how moderate ethanol exposure during pregnancy affects offspring, observing stable maternal behavior and various developmental delays in the young mice.
  • * Key gene expressions related to neurotransmitters were significantly altered in the brains of ethanol-exposed young adult males, suggesting this model can help explore the long-term genetic impacts of FASD.
View Article and Find Full Text PDF

Advanced glycation endproducts (AGEs) accumulate on protein deposits including the beta-amyloid plaques in Alzheimer's disease. AGEs interact with the "receptor for advanced glycation endproducts", and transmit their signals using intracellular reactive oxygen species as second messengers. Ultimately, AGEs induce the expression of a variety of pro-inflammatory markers including the tumor necrosis factor (TNF-alpha) and inducible nitric oxide (NO) synthase.

View Article and Find Full Text PDF