Publications by authors named "Elise Vickridge"

Genetic studies in mice and human cancers established BCL11B as a haploinsufficient tumor suppressor gene. Paradoxically, BCL11B is overexpressed in some human cancers where its knockdown is synthetic lethal. We identified the BCL11B protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1.

View Article and Find Full Text PDF

Introduction: DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway is revealed with particular drug inducing lesions, but the repair of most DNA lesions depends on concomitant or subsequent action of the multiple pathways.

View Article and Find Full Text PDF

We identified the BCL11A protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. , DNA repair assays demonstrate that both BCL11A and a small recombinant BCL11A protein that is devoid of DNA binding and transcription regulatory domains can stimulate the enzymatic activities of two base excision repair enzymes: NTHL1 and DNA Pol β. Increased DNA repair efficiency, in particular of the base excision repair pathway, is essential for many cancer cells to proliferate in the presence of elevated reactive oxygen species (ROS) produced by cancer-associated metabolic changes.

View Article and Find Full Text PDF

Cancer cells, in which the RAS and PI3K pathways are activated, produce high levels of reactive oxygen species (ROS), which cause oxidative DNA damage and ultimately cellular senescence. This process has been documented in tissue culture, mouse models, and human pre-cancerous lesions. In this context, cellular senescence functions as a tumour suppressor mechanism.

View Article and Find Full Text PDF

Recent studies revealed that CUT domains function as accessory factors that accelerate DNA repair by stimulating the enzymatic activities of the base excision repair enzymes OGG1, APE1, and DNA pol β. Strikingly, the role of CUT domain proteins in DNA repair is exploited by cancer cells to facilitate their survival. Cancer cells in which the RAS pathway is activated produce an excess of reactive oxygen species (ROS) which, if not counterbalanced by increased production of antioxidants, causes sustained oxidative DNA damage and, ultimately, cell senescence.

View Article and Find Full Text PDF

The full-length CUX1 protein isoform was previously shown to function as an auxiliary factor in base excision repair (BER). Specifically, CUT domains within CUX1 stimulate the enzymatic activities of the OGG1 DNA glycosylase and APE1 endonuclease. Moreover, ectopic expression of CUX1 or CUT domains increased the resistance of cancer cells to treatments that cause oxidative DNA damage and mono-alkylation of bases.

View Article and Find Full Text PDF

Sister chromatid cohesion is a transient state during replication in bacteria. It has been recently demonstrated that the extent of contact between cohesive sisters during the cell cycle is dependent on topoisomerase IV activity, suggesting that topological links hold sister chromatids together. In the present protocol, we describe a simple method to quantify the frequency of the contacts between two cohesive sister chromatids.

View Article and Find Full Text PDF

Aberrant DNA replication is a major source of the mutations and chromosomal rearrangements associated with pathological disorders. In bacteria, several different DNA lesions are repaired by homologous recombination, a process that involves sister chromatid pairing. Previous work in Escherichia coli has demonstrated that sister chromatid interactions (SCIs) mediated by topological links termed precatenanes, are controlled by topoisomerase IV.

View Article and Find Full Text PDF

Catenation links between sister chromatids are formed progressively during DNA replication and are involved in the establishment of sister chromatid cohesion. Topo IV is a bacterial type II topoisomerase involved in the removal of catenation links both behind replication forks and after replication during the final separation of sister chromosomes. We have investigated the global DNA-binding and catalytic activity of Topo IV in E.

View Article and Find Full Text PDF