We investigate the fundamental optical properties of single zinc-blende InP/ZnSe/ZnS nanocrystals (NCs) using frequency- and time-resolved magneto-photoluminescence spectroscopy. At liquid helium temperature, highly resolved spectral fingerprints are obtained and identified as the recombination lines of the three lowest states of the band-edge exciton fine structure. The evolutions of the photoluminescence spectra and decays under magnetic fields show evidence for a ground dark exciton level 0 with zero angular momentum projection along the NC main elongation axis.
View Article and Find Full Text PDFLead halide perovskites open great prospects for optoelectronics and a wealth of potential applications in quantum optical and spin-based technologies. Precise knowledge of the fundamental optical and spin properties of charge-carrier complexes at the origin of their luminescence is crucial in view of the development of these applications. On nearly bulk Cesium-Lead-Bromide single perovskite nanocrystals, which are the test bench materials for next-generation devices as well as theoretical modeling, we perform low temperature magneto-optical spectroscopy to reveal their entire band-edge exciton fine structure and charge-complex binding energies.
View Article and Find Full Text PDF