Publications by authors named "Elise M Symer"

Article Synopsis
  • The study highlights the importance of identifying host factors in pneumonia to improve treatment strategies.
  • LOX-1, a receptor known for causing inflammation, has been found to accumulate in the lungs during pneumonia but functions protectively by limiting inflammation and edema.
  • The research suggests that macrophages and neutrophils express LOX-1, with its blockade causing immune dysregulation, indicating LOX-1's critical role in lung protection during pneumonia.
View Article and Find Full Text PDF

Pneumonia is a major public health concern, causing significant morbidity and mortality annually despite the broad use of antimicrobial agents. Underlying many of the severe sequelae of acute lung infections is dysfunction of the immune response, which remains incompletely understood yet is an attractive target of adjunct therapy in pneumonia. Here, we investigate the role of oncostatin M (OSM), a pleiotropic cytokine of the interleukin-6 (IL-6) family, and how its signaling modulates multiple innate immune pathways during pneumonia.

View Article and Find Full Text PDF

Interleukin-11 (IL-11) is an interleukin-6 (IL-6) family cytokine shown to play a protective role in acute inflammatory settings including systemic infection. In this study we addressed the role of IL-11 in acute bacterial pneumonia using a mouse model of E. coli pneumonia.

View Article and Find Full Text PDF

Pneumonia and sepsis are distinct but integrally linked public health concerns. The hepatic acute-phase response (APR), which is largely dependent on transcription factors NF-κB RelA and STAT3, is a hallmark of these pathologies and other injurious conditions. Inactivation of the APR can promote liver injury, a frequently observed organ dysfunction during sepsis.

View Article and Find Full Text PDF

In bacterial pneumonia, lung damage resulting from epithelial cell injury is a major contributor to the severity of disease and, in some cases, can lead to long-term sequelae, especially in the setting of severe lung injury or acute respiratory distress syndrome. Leukemia inhibitory factor (LIF), a member of the IL-6 cytokine family, is a critical determinant of lung tissue protection during pneumonia, but the cellular sources of LIF and the signaling pathways leading to its production in the infected lung are not known. Here, we demonstrate that lung epithelium, specifically alveolar type II cells, is the predominant site of LIF transcript induction in pneumonic mouse lungs.

View Article and Find Full Text PDF