Publications by authors named "Elise Larsen"

Thermal performance curves (TPCs) depict variation in vital rates in response to temperature and have been an important tool to understand ecological and evolutionary constraints on the thermal sensitivity of ectotherms. TPCs allow for the calculation of indicators of thermal tolerance, such as minimum, optimum, and maximum temperatures that allow for a given metabolic function. However, these indicators are computed using only responses from surviving individuals, which can lead to underestimation of deleterious effects of thermal stress, particularly at high temperatures.

View Article and Find Full Text PDF

Species distribution models are the primary tools to project future species' distributions, but this complex task is influenced by data limitations and evolving best practices. The majority of the 53 studies we examined utilized correlative models and did not follow current best practices for validating retrospective or future environmental data layers. Despite this, a summary of results is largely unsurprising: shifts toward cooler regions, but otherwise mixed dynamics emphasizing winners and losers.

View Article and Find Full Text PDF

Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera.

View Article and Find Full Text PDF

Data availability limits phenological research at broad temporal and spatial extents. Butterflies are among the few taxa with broad-scale occurrence data, from both incidental reports and formal surveys. Incidental reports have biases that are challenging to address, but structured surveys are often limited seasonally and may not span full flight phenologies.

View Article and Find Full Text PDF

Here, we present the largest, global dataset of Lepidopteran traits, focusing initially on butterflies (ca. 12,500 species records). These traits are derived from field guides, taxonomic treatments, and other literature resources.

View Article and Find Full Text PDF
Article Synopsis
  • Insect phenological lability plays a crucial role in how species adapt to environmental changes, yet the timing and duration of adult insect activity remain unclear.
  • Using community-science and museum data, the study examines the impact of climate and urbanization on adult insect activity across 101 species with different life history traits.
  • Findings indicate that detritivores and aquatic larvae species adaptively extend their activity periods in response to rising temperatures, while those with subterranean larvae show consistent activity durations, highlighting a general response to warming.
View Article and Find Full Text PDF

Large occurrence datasets provide a sizable resource for ecological analyses, but have substantial limitations. Phenological analyses in Fric et al. (2020) were misleading due to inadequate curation and improper statistics.

View Article and Find Full Text PDF

The maximum per capita rate of population growth, r, is a central measure of population biology. However, researchers can only directly calculate r when adequate time series, life tables and similar datasets are available. We instead view r as an evolvable, synthetic life-history trait and use comparative phylogenetic approaches to predict r for poorly known species.

View Article and Find Full Text PDF

Specialized metabolic enzymes biosynthesize chemicals of ecological importance, often sharing a pedigree with primary metabolic enzymes. However, the lineage of the enzyme chalcone isomerase (CHI) remained unknown. In vascular plants, CHI-catalysed conversion of chalcones to chiral (S)-flavanones is a committed step in the production of plant flavonoids, compounds that contribute to attraction, defence and development.

View Article and Find Full Text PDF

Mate finding, which is essential to both population growth and gene exchange, involves both spatial and temporal components. From a population dynamics perspective, spatial mate-finding problems are well studied, and decreased mate-finding efficiency at low population densities is a well-recognized mechanism for the Allee effect. Temporal aspects of mate finding have been rarely considered, but reproductive asynchrony may engender an Allee effect in which some females go mateless by virtue of temporal isolation.

View Article and Find Full Text PDF

The docking protein p130Cas becomes phosphorylated upon cell adhesion to extracellular matrix proteins, and is thought to play an essential role in cell transformation. Cas transmits signals through interactions with the Src-homology 3 (SH3) and Src-homology 2 domains of FAK or v-Crk signaling molecules, or with 14-3-3 protein, as well as phosphatases PTP1B and PTP-PEST. The large (130kDa), multi-domain Cas molecule contains an SH3 domain, a Src-binding domain, a serine-rich protein interaction region, and a C-terminal region that participates in protein interactions implicated in antiestrogen resistance in breast cancer.

View Article and Find Full Text PDF