Microplastics (MPs) and other anthropogenic particles (APs) are pervasive environmental contaminants found throughout marine and aquatic environments. We quantified APs in the edible tissue of black rockfish, lingcod, Chinook salmon, Pacific herring, Pacific lamprey, and pink shrimp, comparing AP burdens across trophic levels and between vessel-retrieved and retail-purchased individuals. Edible tissue was digested and analyzed under a microscope, and a subset of suspected APs was identified using spectroscopy (μFTIR).
View Article and Find Full Text PDFAbout 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments.
View Article and Find Full Text PDFMangrove forests are exposed to diverse ocean-sourced and land-based contaminants, yet mangrove contamination research lags. We synthesize existing data and identify major gaps in research on five classes of mangrove contaminants: trace metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, microplastics, and pharmaceuticals and personal care products. Research is concentrated in Asia, neglected in Africa and the Americas; higher concentrations are correlated with waste water treatment plants, industry, and urbanized landscapes.
View Article and Find Full Text PDFMunicipal wastewater treatment plant (WWTP) effluent is a primary source of pharmaceuticals and personal care products (PPCPs) to the marine environment, as most of these compounds are not fully removed during the treatment process. Continual discharge from WWTPs into coastal areas may act as a stressor by continually exposing organisms to a suite of PPCPs. To quantify organismal exposure to PPCP mixtures, we conducted a 12-week lab experiment that exposed Pacific oysters to effluent from two Oregon coastal WWTPs of different discharge capacities (permitted as <1 million gallons/day and >1 million gallons/day; or < or >3.
View Article and Find Full Text PDFContaminants are ubiquitous in the environment, often reaching aquatic systems. Combinations of forestry use pesticides have been detected in both water and aquatic organism tissue samples in coastal systems. Yet, most toxicological studies focus on the effects of these pesticides individually, at high doses, and over acute time periods, which, while key for establishing toxicity and safe limits, are rarely environmentally realistic.
View Article and Find Full Text PDFPharmaceuticals and personal care products in wastewater discharge can be stressors to estuarine species. We transplanted juvenile Pacific oysters at varying distances within sites near wastewater treatment plant outfalls or oyster aquaculture control sites to assess small scale spatial variation in contaminant uptake and oyster condition. Oysters were transplanted to sites in Coos and Netarts Bays, Oregon and Grays Harbor, Washington, then collected after 9 and 12 months.
View Article and Find Full Text PDFTerrestrial land use activities present cross-ecosystem threats to riverine and marine species and processes. Specifically, pesticide runoff can disrupt hormonal, reproductive, and developmental processes in aquatic organisms, yet non-point source pollution is difficult to trace and quantify. In Oregon, U.
View Article and Find Full Text PDFProduction and use of pharmaceuticals in the United States is high and continues to grow. This, combined with poor wastewater removal rates for drugs in excreted waste, and improper pharmaceutical disposal leads to the presence of pharmaceuticals in fresh- and marine waters and wildlife. In the United States, safe drug take-back boxes, or dropboxes, were established in pharmacies after federal legislation passed in 2014, allowing for year-round safe collection of leftover pharmaceuticals.
View Article and Find Full Text PDFMicroplastics are ubiquitous in our environment and are found in rivers, streams, oceans, and even tap water. Riverine microplastics are relatively understudied compared with those in marine ecosystems. In Oregon (USA), we sampled 8 sites along 4 freshwater rivers spanning rural to urban areas to quantify microplastics.
View Article and Find Full Text PDFPredators exert considerable top-down pressure on ecosystems by directly consuming prey or indirectly influencing their foraging behaviors and habitat use. Prey is, therefore, forced to balance predation risk with resource reward. A growing list of anthropogenic stressors such as rising temperatures and ocean acidification has been shown to influence prey risk behaviors and subsequently alter important ecosystem processes.
View Article and Find Full Text PDFSci Total Environ
February 2017
As of 2008, approximately 48% of Americans use prescription drugs within any given 30-day period. Many pharmaceutical compounds are not fully metabolized by the human body, nor fully removed by wastewater treatment systems, before release into the environment. As a result, a vast array of pharmaceuticals has been detected in marine and freshwater organisms, sediments, and waters, with unintended effects on non-target organisms, and limited studies of environmental effects.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2016
Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging concern that are increasing in use and have demonstrated negative effects on aquatic organisms. There is a growing body of literature reporting the effects of PPCPs on freshwater organisms, but studies on the effects of PPCPs to marine and estuarine organisms are limited. Among effect studies, the vast majority examines subcellular or cellular effects, with far fewer studies examining organismal- and community-level effects.
View Article and Find Full Text PDFChemical contaminants can be introduced into estuarine and marine ecosystems from a variety of sources including wastewater, agriculture and forestry practices, point and non-point discharges, runoff from industrial, municipal, and urban lands, accidental spills, and atmospheric deposition. The diversity of potential sources contributes to the likelihood of contaminated marine waters and sediments and increases the probability of uptake by marine organisms. Despite widespread recognition of direct and indirect pathways for contaminant deposition and organismal exposure in coastal systems, spatial and temporal variability in contaminant composition, deposition, and uptake patterns are still poorly known.
View Article and Find Full Text PDFEnvironmental stressors shape community composition and ecosystem functioning. Contaminants such as pharmaceuticals are of increasing concern as an environmental stressor due to their persistence in surface waters worldwide. Limited attention has been paid to the effects of pharmaceuticals on marine life, despite widespread detection of these contaminants in the marine environment.
View Article and Find Full Text PDFChanging climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social).
View Article and Find Full Text PDFInfluenced by natural climatic, geological, and evolutionary changes, landscapes and the ecosystems within are continuously changing. In addition to these natural pressures, anthropogenic drivers have increasingly influenced ecosystems. Whether affected by natural or anthropogenic processes, ecosystems, ecological communities, and ecosystem functioning are dynamic and can lead to "novel" or "emerging" ecosystems.
View Article and Find Full Text PDFCaffeine, a biologically active drug, is recognized as a contaminant of freshwater and marine systems. We quantified caffeine concentrations in Oregon's coastal ocean to determine whether levels correlated with proximity to caffeine pollution sources. Caffeine was analyzed at 14 coastal locations, stratified between populated areas with sources of caffeine pollution and sparsely populated areas with no major caffeine pollution sources.
View Article and Find Full Text PDFCaffeine, a biologically active drug with many known molecular targets, is recognized as a contaminant of marine systems. Although the concentrations of caffeine reported from aquatic systems are low (ng/l-μg/l), harmful ecological effects not detected by traditional toxicity tests could occur as a result of caffeine contamination. We used Hsp70, a molecular biomarker of cellular stress, to investigate the sub-lethal cellular toxicity of environmentally relevant concentrations of caffeine on the mussel Mytilus californianus, a dominant species in the rocky intertidal zone along the Oregon Coast.
View Article and Find Full Text PDFEcosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process.
View Article and Find Full Text PDFA common assumption is that ecosystem services respond linearly to changes in habitat size. This assumption leads frequently to an "all or none" choice of either preserving coastal habitats or converting them to human use. However, our survey of wave attenuation data from field studies of mangroves, salt marshes, seagrass beds, nearshore coral reefs, and sand dunes reveals that these relationships are rarely linear.
View Article and Find Full Text PDF