Effective mentoring is crucial for early-career researchers, and formal mentor training programs have demonstrated benefits for participating faculty. To determine how mentor training generalizes to different contexts and populations, we delivered mentor training and evaluated its impact on faculty's self-perceived mentoring skills. We also assessed whether mentor experience with diverse mentee populations or mentor gender influences mentors' self-perceived skills and if training interacted with these self-perceptions.
View Article and Find Full Text PDFCogn Affect Behav Neurosci
April 2022
Reward associations are known to shape the brain's processing of visual stimuli, but relatively less is known about how reward associations impact the processing of auditory stimuli. We leveraged the high-temporal resolution of electroencephalography (EEG) and event-related potentials (ERPs) to investigate the influence of low- and high-magnitude stimulus-reward associations in an auditory oddball task. We associated fast, correct detection of certain auditory target stimuli with larger monetary rewards, and other auditory targets with smaller rewards.
View Article and Find Full Text PDFAttention and working memory (WM) have classically been considered as two separate cognitive functions, but more recent theories have conceptualized them as operating on shared representations and being distinguished primarily by whether attention is directed internally (WM) or externally (attention, traditionally defined). Supporting this idea, a recent behavioral study documented a "WM Stroop effect," showing that maintaining a color word in WM impacts perceptual color-naming performance to the same degree as presenting the color word externally in the classic Stroop task. Here, we employed ERPs to examine the neural processes underlying this WM Stroop task compared to those in the classic Stroop and in a WM-control task.
View Article and Find Full Text PDFDistraction can impede our ability to detect and effectively process task-relevant stimuli in our environment. Here we leveraged the high temporal resolution of event-related potentials (ERPs) to study the neural consequences of a global, continuous distractor on signal-detection processes. Healthy, young adults performed the dSAT task, a translational sustained-attention task that has been used across different species and in clinical groups, in the presence and absence of ongoing distracting stimulation.
View Article and Find Full Text PDFDeep semantic encoding of verbal stimuli can aid in later successful retrieval of those stimuli from long-term episodic memory. Evidence from numerous neuropsychological and neuroimaging experiments demonstrate regions in left prefrontal cortex, including left dorsolateral prefrontal cortex (DLPFC), are important for processes related to encoding. Here, we investigated the relationship between left DLPFC activity during encoding and successful subsequent memory with transcranial magnetic stimulation (TMS).
View Article and Find Full Text PDFDistracting stimuli in the environment can pull our attention away from our goal-directed tasks. fMRI studies have implicated regions in right frontal cortex as being particularly important for processing distractors [e.g.
View Article and Find Full Text PDFGiven the information overload often imparted to human cognitive-processing systems, suppression of irrelevant and distracting information is essential for successful behavior. Using a hybrid block/event-related fMRI design, we characterized proactive and reactive brain mechanisms for filtering distracting stimuli. Participants performed a flanker task, discriminating the direction of a target arrow in the presence versus absence of congruent or incongruent flanking distracting arrows during either Pure blocks (distracters always absent) or Mixed blocks (distracters on 80% of trials).
View Article and Find Full Text PDFBoth the passage of time and external distraction make it difficult to keep attention on the task at hand. We tested the hypothesis that time-on-task and external distraction pose independent challenges to attention and that the brain's cholinergic system selectively modulates our ability to resist distraction. Participants with a polymorphism limiting cholinergic capacity (Ile89Val variant [rs1013940] of the choline transporter gene SLC5A7) and matched controls completed self-report measures of attention and a laboratory task that measured decrements in sustained attention with and without distraction.
View Article and Find Full Text PDFNeuropsychopharmacology
March 2014
Deficits in the γ-aminobutyric acid (GABA) system have been reported in postmortem studies of schizophrenia, and therapeutic interventions in schizophrenia often involve potentiation of GABA receptors (GABAR) to augment antipsychotic therapy and treat negative affect such as anxiety. To map GABAergic mechanisms associated with processing affect, we used a benzodiazepine challenge while subjects viewed salient visual stimuli. Fourteen stable, medicated schizophrenia/schizoaffective patients and 13 healthy comparison subjects underwent functional magnetic resonance imaging using the blood oxygenation level-dependent (BOLD) technique while they viewed salient emotional images.
View Article and Find Full Text PDFObjective: Attentional deficits represent a core cognitive impairment in schizophrenia. The distractor condition Sustained Attention Task (dSAT) has been identified by the Cognitive Neuroscience Treatment to Improve Cognition in Schizophrenia (CNTRICS) initiative as a promising translational task for assessing schizophrenia-related deficits in attentional selection-control, identifying neuroimaging biomarkers of such deficits, and for preclinical animal research on potential pro-cognitive treatments. Here, we examined whether patients would show specific difficulties in selection-control and in avoiding distraction in the dSAT.
View Article and Find Full Text PDFAttentional impairments are found in a range of neurodegenerative and neuropsychiatric disorders. However, the development of procognitive enhancers to alleviate these impairments has been hindered by a lack of comprehensive hypotheses regarding the circuitry mediating the targeted attentional functions. Here we discuss the role of the cortical cholinergic system in mediating cue detection and attentional control and propose two target mechanisms for cognition enhancers: stimulation of prefrontal α4β2* nicotinic acetylcholine receptors (nAChR) for the enhancement of cue detection and augmentation of tonic acetylcholine levels for the enhancement of attentional control.
View Article and Find Full Text PDFSustaining and recovering attentional performance requires interactions between the brain's motivation and attention systems. The first experiment demonstrated that in rats performing a sustained attention task (SAT), presentation of a distractor (dSAT) augmented performance-associated increases in cholinergic neurotransmission in prefrontal cortex. Because stimulation of NMDA receptors in the shell of the nucleus accumbens activates PFC cholinergic neurotransmission, a second experiment demonstrated that bilateral infusions of NMDA into the NAc shell, but not core, improved dSAT performance to levels observed in the absence of a distractor.
View Article and Find Full Text PDFMaintaining attention and performance over time is an essential part of many activities, and effortful cognitive control is required to avoid vigilance decrements and interference from distraction. Regions at or near right middle frontal gyrus (Brodmann's area (BA) 9), as well as in other prefrontal and parietal areas, are often activated in studies of sustained attention (e.g.
View Article and Find Full Text PDFSubstantial gains have been made on the neurobiology of attention from systems neuroscience work in animal models and human cognitive neuroscience. However, the integration of rodent-based research on the specific neurotransmitter systems that subserve attention with the results from human behavioral and neuroimaging studies has been hampered by the lack of tasks that validly assess attention in both species. To address this issue, an operant sustained attention task that has been extensively used in research on the neurobiology of attention in rats was redesigned and validated for use in humans.
View Article and Find Full Text PDF