Scientific articles often contain relevant geographic information such as where field work was performed or where patients were treated. Most often, this information appears in the full-text article contents as a description in natural language including place names, with no accompanying machine-readable geographic metadata. Automatically extracting this geographic information could help conduct meta-analyses, find geographical research gaps, and retrieve articles using spatial search criteria.
View Article and Find Full Text PDFCancers arise from the accumulation of somatic genome mutations, which can be influenced by inherited genomic variants and external factors such as environmental or lifestyle-related exposure. Due to the heterogeneity of cancers, precise information about the genomic composition of germline and malignant tissues has to be correlated with morphological, clinical and extrinsic features to advance medical knowledge and treatment options. With global differences in cancer frequencies and disease types, geographic data is of importance to understand the interplay between genetic ancestry and environmental influence in cancer incidence, progression and treatment outcome.
View Article and Find Full Text PDF