This work describes results of a first proof of the concept of electrorefinery with a real waste obtained from a cashew nut factory, and it shows the effect of the current densities of both the anodic oxidation and electrochemically assisted separation processes on the performance of the system. Results obtained demonstrate that electrorefinery is a promising option to minimize the carbon fingerprint, worth studying for increasing the sustainability of the environmental remediation of wastes, because valuable species can be obtained from the destruction of pollutants and recovered within the same integrated process. They also point out that there is still a long way to reach an optimum solution for this technology, but it is worth the effort to be made.
View Article and Find Full Text PDFRSC Adv
November 2023
There is a growing concern with waste minimization and the promotion of the circular economy. Within this framework, using membrane-equipped electrochemical systems, the electrochemical oxidation (EO) of organic compounds and simultaneous hydrogen (H) production can considerably improve the sustainability and economic viability of this process. Here, we propose an innovative-integrate electrochemical treatment strategy to maximize the economic benefits and sustainability of selectively producing organic acids and energy-saving H production from biomass platform compounds.
View Article and Find Full Text PDFPersulfate (PDS), peroxodisulfate, peroxydisulfate, peroxodisulfuric acid, is an oxidant that can be generated by direct oxidation of sulfate ions or indirectly via reaction with hydroxyl radicals in anodes with high oxygen overpotential. Quantitative methods for determining/quantifying PDS in the presence of other strong oxidants or other anions in eco-friendly applications do not give reliable results because of these interferents. Therefore, an additional method is needed to improve the efficacy to determine/quantify the PDS concentration in oxidative environments.
View Article and Find Full Text PDFChemosphere
September 2023
This study investigated the potential of a novel biomass-derived cork as a suitable catalyst after its modification with Fe@FeO for in-situ application in heterogeneous electro-Fenton (HEF) process for benzoquinone (BQ) elimination from water. No attempts on the application of modified granulated cork (GC) as a suspended heterogeneous catalyst in the HEF process for water treatment have been published yet. GC was modified by sonification approach in a FeCl + NaBH solution to reduce the ferric ions to metallic iron in order to obtain Fe@FeO-modified GC (Fe@FeO/GC).
View Article and Find Full Text PDFThis work focuses on the electrochemical production of hydrogen peroxide in supporting electrolytes containing perchlorate ions for being used as a reagent in the reduction of chlorates to produce chlorine dioxide, as a first step in the manufacture of portable ClO production devices. This study evaluates the effect of the current density, pressure, and temperature on the production of hydrogen peroxide, and concentrations over 400 mg L are reached. The average rate for the formation of hydrogen peroxide is 9.
View Article and Find Full Text PDFLead is one of the most toxic metals for living organisms: once absorbed by soft tissues, it is capable of triggering various pathologies, subsequently bioaccumulating in the bones. In consideration of this, its detection and quantification in products for human consumption and use is of great interest, especially if the procedure can be carried out in an easy, reproducible and economical way. This work presents the results of the electroanalytical determination of lead in three different commercial products used as progressive hair dyes.
View Article and Find Full Text PDFRSC Adv
October 2020
In this work, the electrochemical oxidation of the Methyl Red (MR) dye and the herbicide sodium 2,4-dichlorophenoxyacetate (2,4-DNa) was investigated on Si/BDD, Pb/PbO and Ti/Sb-doped SnO anodes in aqueous acidic medium by applying 30 mA cm at 298 K. The electrochemical experiments were carried out in a two-compartment electrochemical cell separated through a Nafion® membrane (417 type) in order to use two types of supporting electrolyte to measure the elimination of the organic compound, the hydrogen production and the amount of oxygen produced during the oxidation of the pollutants. Although the main goal of this study is to understand the relationship between both processes, the evaluation of the current efficiencies () is a key parameter to determine the anodic oxidative capacity to degrade the proposed pollutants.
View Article and Find Full Text PDFRSC Adv
October 2020
In this work, results concerning hydrogen gas production during the oxidation of methyl red (MR) and sodium 2,4-dichlorophenoxyacetate (2,4-DNa), is presented, emphasizing not only the amount of hydrogen gas that was produced but also the kinetic and efficiency parameters involved in this process. For this purpose, a two-compartment electrochemical cell was used with a Nafion® membrane as separator in order to collect H without other chemical species (only with traces of water vapor). Under these experimental conditions, it was possible to guarantee the purity of the H collected.
View Article and Find Full Text PDFIn recent years, due to industrial modernization and agricultural mechanization, several environmental consequences have been observed, which make sustainable development difficult. Soil, as an important component of ecosystem and a key resource for the survival of human and animals, has been under constant contamination from different human activities. Contaminated soils and sites require remediation not only because of the hazardous threat it possess to the environment but also due to the shortage of fresh land for both agriculture and urbanization.
View Article and Find Full Text PDFElectrochemical advanced oxidation processes such as electrooxidation (EO), electrooxidation with hydrogen peroxide generation (EO-HO) and electro-Fenton process (EF) have been investigated as alternative treatment techniques for complete removal of anionic surfactants and organic matters from real carwash wastewater. The electrochemical processes were performed with acidified real carwash wastewater using boron doped anode and carbon felt cathode. In all cases, the chemical oxygen demand (COD) removal efficiency was always increased with rise in applied current and complete organic matter decay was achieved at applied current of 500 mA or above after 6 h of electrolysis.
View Article and Find Full Text PDFIn this research, firstly, the treatment of soil spiked with oxyfluorfen was studied using a surfactant-aided soil-washing (SASW) process. After that, the electrochemical treatment of the washing liquid using boron doped diamond (BDD) anodes was performed. Results clearly demonstrate that SASW is a very efficient approach in the treatment of soil, removing the pesticide completely by using dosages below 5 g of sodium dodecyl sulfate (SDS) per Kg of soil.
View Article and Find Full Text PDFIn this work, it is studied the removal of atrazine from spiked soils by soil washing using surfactant fluids, followed by the treatment of the resulting washing waste by electrolysis with boron doped diamond (BDD) anode. Results confirm that combination of both technologies is efficient for the removal and total mineralization of atrazine. Ratio surfactant/soil is a key parameter for the removal of atrazine from soil and influences significantly in the characteristic of the wastewater produced, affecting not only to the total organic load but also to the mean size of micelles.
View Article and Find Full Text PDFScale-up of anodic oxidation system is critical to the practical application of electrochemical treatment in bio-refractory organic wastewater treatment. In this study, the scale-up of electrochemical flow system was investigated by treating petrochemical wastewater using platinized titanium (Ti/Pt) and boron-doped diamond (BDD) anodes. It was demonstrated that flow cell was successfully scaled-up because when it was compared with batch mode (Rocha et al.
View Article and Find Full Text PDFProduced water (PW) is the largest waste stream generated in oil and gas industries. The drilling and extraction operations that are aimed to maximize the production of oil may be counterbalanced by the huge production of contaminated water (called PW) with pollutants, such as heavy metals, dissolved/suspended solids, and organic compounds. PW is conventionally treated through different physical, chemical, and biological methods.
View Article and Find Full Text PDF