Publications by authors named "Elisama V Dos Santos"

A direct and practical method for photocatalyzed hydrodecarboxylation of fatty acids is reported herein. The catalytic system consists of a commercially available acridinium salt as the photocatalyst and thiophenol as the Hydrogen Atom Transfer (HAT) co-catalyst. Results evidenced that C alkanes were obtained in yields up to 77%.

View Article and Find Full Text PDF

Beauty salons (BS) are places that deal with a wide range of cosmetics with potentially hazardous chemicals, and their effluent should be properly treated before going to the sewage system, once it represents characteristics of industrial wastewater. This work provides an extensive characterization of a BS effluent and its respective electrochemical treatment by comparing NaCl, NaSO, and NaSO as supporting electrolytes with a boron-doped diamond (BDD) as anode, applying 10 or 30 mA cm of current density (j). The inclusion of UVC irradiation was also performed but the improvements achieved in removing the organic matter were null or lower.

View Article and Find Full Text PDF

A mild, practical, and environmentally friendly method for the hydrodecarboxylation of fatty acids using an acridine-based photoredox catalyst and thiophenol was developed. C alkanes were synthesized in good to excellent yields (up to 99 %) from C10-C18 saturated fatty acids under visible light irradiation (405 nm). The developed protocol was employed for a mixture of fatty acids obtained from the hydrolysis of Licuri oil, affording a mixture of C9-C17 hydrocarbons in quantitative yield, which demonstrates the potential application of the method to produce drop-in biofuels.

View Article and Find Full Text PDF

Aiming the decentralization of monitoring policies and to facilitate the work of researchers, mainly in developing countries, the present method deals with the explanation of a simple and rapid protocol for chemical oxygen demand (COD) analysis through the use of digital smartphone devices coupled with a camera and a free app available for Android operating system that recognizes HSV (hue, saturation, value). The calibration of the method is done based on the theoretical values of potassium hydrogen phthalate for a proper and reliable build of the calibration curve by using the smartphone-based technique and the digested samples of COD. The coefficient of determination (R) attained a value upper than 0.

View Article and Find Full Text PDF

This study is focused on a proposal of a smartphone imaging-based quantification for providing a simple and rapid method for the analysis of chemical oxygen demand (COD) and color throughout the use of the HSV and/or RGB model in digital devices. For COD, calibration curves were done based on the theoretical values of potassium biphthalate for a proper comparison between the spectrophotometer and the smartphone techniques. The smartphone camera and application attain an average accuracy higher than the analysis in the spectrophotometer (98.

View Article and Find Full Text PDF

This study investigated the potential of a novel biomass-derived cork as a suitable catalyst after its modification with Fe@FeO for in-situ application in heterogeneous electro-Fenton (HEF) process for benzoquinone (BQ) elimination from water. No attempts on the application of modified granulated cork (GC) as a suspended heterogeneous catalyst in the HEF process for water treatment have been published yet. GC was modified by sonification approach in a FeCl + NaBH solution to reduce the ferric ions to metallic iron in order to obtain Fe@FeO-modified GC (Fe@FeO/GC).

View Article and Find Full Text PDF

In this study, for the first time, the production of green hydrogen gas (H) in the cathodic compartment, in concomitance with the electrochemical oxidation (EO) of an aqueous solution containing Calcon dye at the anodic compartment, was studied in a PEM-type electrochemical cell driven by a photovoltaic (PV) energy source. EO of Calcon was carried out on a Nb/BDD anode at different current densities (7.5, 15 and 30 mA cm), while a stainless steel (SS) cathode was used for green H production.

View Article and Find Full Text PDF

This study aims to develop a cheap method for the evaluation of quality of water or the assessment of the treatment of water by chemical oxygen demand (COD) measurements throughout the use of the HSV color model in digital devices. A free application installed on a smartphone was used for analyzing the images in which the colors were acquired before to be quantified. The proposed method was also validated by the standard and spectrophotometric methods, demonstrating that no significant statistical differences were attained (average accuracy of 97 %).

View Article and Find Full Text PDF

This paper focuses on the evaluation of the mobility of four hexachlorocyclohexane (HCH) isomers by soil vapor extraction (SVE) coupled with direct electrokinetic (EK) treatment without adding flushing fluids. SVE was found to be very efficient and remove nearly 70 % of the four HCH in the 15-days of the tests. The application of electrokinetics produced the transport of HCH to the cathode by different electrochemical processes, which were satisfactorily modelled with a 1-D transport equation.

View Article and Find Full Text PDF

Worldwide, most solid waste ends its life in landfill sites, which have a significant environmental impact in several respects. In particular, rainfall over landfill sites results in the production of an aqueous leachate containing compounds having low biodegradability, high toxicity, and a high organic load. For this reason, this study aims to investigate the applicability of electro-Fenton (EF) and photoelectro-Fenton (PEF) processes as alternative for treating a local landfill effluent with high organic content (chemical oxygen demand (COD) = 2684.

View Article and Find Full Text PDF

This work focuses on the electrochemical production of hydrogen peroxide in supporting electrolytes containing perchlorate ions for being used as a reagent in the reduction of chlorates to produce chlorine dioxide, as a first step in the manufacture of portable ClO production devices. This study evaluates the effect of the current density, pressure, and temperature on the production of hydrogen peroxide, and concentrations over 400 mg L are reached. The average rate for the formation of hydrogen peroxide is 9.

View Article and Find Full Text PDF

This paper evaluates the combination of electrokinetic soil flushing (EKSF) with soil vapor extraction (SVE) for the removal of four hexachlorocyclohexane (HCH) isomers contained in a real matrix. Results demonstrate that the combination of EKSF and SVE can be positive, but it is required the application of high electric fields (3 V cm) in order to promote a higher temperature in the system, which improves the volatilization of the HCH contained in the system. Electrokinetic transport is also enhanced with the application of higher electric gradients, but these transport processes are slower than the volatilization processes, which are the primary in this system.

View Article and Find Full Text PDF

Hydroxychloroquine (HCQ), a derivative of 4-aminoquinolone, is prescribed as an antimalarial prevention drug and to treat diseases such as rheumatoid arthritis, and systemic lupus erythematosus. Recently, Coronavirus (COVID-19) treatment was authorized by national and international medical organizations by chloroquine and hydroxychloroquine in certain hospitalized patients. However, it is considered as an unproven hypothesis for treating COVID-19 which even itself must be investigated.

View Article and Find Full Text PDF

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5-1000 µM), with R of 0.

View Article and Find Full Text PDF

In this work, the electrochemical oxidation of the Methyl Red (MR) dye and the herbicide sodium 2,4-dichlorophenoxyacetate (2,4-DNa) was investigated on Si/BDD, Pb/PbO and Ti/Sb-doped SnO anodes in aqueous acidic medium by applying 30 mA cm at 298 K. The electrochemical experiments were carried out in a two-compartment electrochemical cell separated through a Nafion® membrane (417 type) in order to use two types of supporting electrolyte to measure the elimination of the organic compound, the hydrogen production and the amount of oxygen produced during the oxidation of the pollutants. Although the main goal of this study is to understand the relationship between both processes, the evaluation of the current efficiencies () is a key parameter to determine the anodic oxidative capacity to degrade the proposed pollutants.

View Article and Find Full Text PDF

In this work, results concerning hydrogen gas production during the oxidation of methyl red (MR) and sodium 2,4-dichlorophenoxyacetate (2,4-DNa), is presented, emphasizing not only the amount of hydrogen gas that was produced but also the kinetic and efficiency parameters involved in this process. For this purpose, a two-compartment electrochemical cell was used with a Nafion® membrane as separator in order to collect H without other chemical species (only with traces of water vapor). Under these experimental conditions, it was possible to guarantee the purity of the H collected.

View Article and Find Full Text PDF

In this research, firstly, the treatment of soil spiked with oxyfluorfen was studied using a surfactant-aided soil-washing (SASW) process. After that, the electrochemical treatment of the washing liquid using boron doped diamond (BDD) anodes was performed. Results clearly demonstrate that SASW is a very efficient approach in the treatment of soil, removing the pesticide completely by using dosages below 5 g of sodium dodecyl sulfate (SDS) per Kg of soil.

View Article and Find Full Text PDF

In this work, it is studied the removal of atrazine from spiked soils by soil washing using surfactant fluids, followed by the treatment of the resulting washing waste by electrolysis with boron doped diamond (BDD) anode. Results confirm that combination of both technologies is efficient for the removal and total mineralization of atrazine. Ratio surfactant/soil is a key parameter for the removal of atrazine from soil and influences significantly in the characteristic of the wastewater produced, affecting not only to the total organic load but also to the mean size of micelles.

View Article and Find Full Text PDF

Scale-up of anodic oxidation system is critical to the practical application of electrochemical treatment in bio-refractory organic wastewater treatment. In this study, the scale-up of electrochemical flow system was investigated by treating petrochemical wastewater using platinized titanium (Ti/Pt) and boron-doped diamond (BDD) anodes. It was demonstrated that flow cell was successfully scaled-up because when it was compared with batch mode (Rocha et al.

View Article and Find Full Text PDF

Produced water (PW) is the largest waste stream generated in oil and gas industries. The drilling and extraction operations that are aimed to maximize the production of oil may be counterbalanced by the huge production of contaminated water (called PW) with pollutants, such as heavy metals, dissolved/suspended solids, and organic compounds. PW is conventionally treated through different physical, chemical, and biological methods.

View Article and Find Full Text PDF