Fibroblast growth factor 23 (FGF23) is a bone-secreted protein widely recognized as a critical regulator of skeletal and mineral metabolism. However, little is known about the nonskeletal production of FGF23 and its role in tissues other than bone. Growing evidence indicates that circulating FGF23 levels rise with a high-fat diet (HFD) and they are positively correlated with body mass index (BMI) in humans.
View Article and Find Full Text PDFBackground And Aim: Triglyceride (TG) levels are closely related to obesity, fatty liver and cardiovascular diseases, while the regulatory factors and mechanism for triglyceride homeostasis are still largely unknown. Zinc Finger Protein 638 (ZNF638) is a newly discovered member of zinc finger protein family for adipocyte function in vitro. The aim of the present work was to investigate the role of ZNF638 in regulating triglyceride metabolism in mice.
View Article and Find Full Text PDFMethotrexate (MTX) is widely used for the treatment of rheumatoid arthritis due to its well-known anti-inflammatory role in immune cells but its impact on brown and beige adipose tissue biology has not yet been investigated. Here, we present the novel evidence that MTX treatment increases the gene expression of thermogenic genes in brown and beige adipose tissues in a fat cell autonomous manner. Furthermore, we show that treatment of mice with MTX is associated with cold resistance, improved glucose homeostasis, decreased inflammation, and reduced hepatosteatosis in high-fat diet states.
View Article and Find Full Text PDFForkhead box transcription factors have been shown to be involved in various developmental and differentiation processes. In particular, members of the FoxP family have been previously characterized in depth for their participation in the regulation of lung and neuronal cell differentiation and T-cell development and function; however, their role in adipocyte functionality has not yet been investigated. Here, we report for the first time that Forkhead box P4 (FoxP4) is expressed at high levels in subcutaneous fat depots and mature thermogenic adipocytes.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
April 2021
[Figure: see text].
View Article and Find Full Text PDFAging leads to a number of disorders caused by cellular senescence, tissue damage, and organ dysfunction. It has been reported that anti-inflammatory and insulin-sensitizing compounds delay, or reverse, the aging process and prevent metabolic disorders, neurodegenerative disease, and muscle atrophy, improving healthspan and extending lifespan. Here we investigated the effects of PPARγ agonists in preventing aging and increasing longevity, given their known properties in lowering inflammation and decreasing glycemia.
View Article and Find Full Text PDFHeat shock factor 1 (HSF1) regulates cellular adaptation to challenges such as heat shock and oxidative and proteotoxic stresses. We have recently reported a previously unappreciated role for HSF1 in the regulation of energy metabolism in fat tissues; however, whether HSF1 is differentially expressed in adipose depots and how its levels are regulated in fat tissues remain unclear. Here, we show that HSF1 levels are higher in brown and subcutaneous fat tissues than in those in the visceral depot and that HSF1 is more abundant in differentiated, thermogenic adipocytes.
View Article and Find Full Text PDFZinc finger factors are implicated in a variety of cellular processes, including adipose tissue differentiation and thermogenesis. We have previously demonstrated that zinc finger protein 638 (ZNF638) is a transcriptional coactivator acting as an early regulator of adipogenesis . In this study, we show, to our knowledge for the first time, that, , ZNF638 abounds selectively in mature brown and subcutaneous fat tissues and in fully differentiated thermogenic adipocytes.
View Article and Find Full Text PDFIt is well established that aging is associated with metabolic dysfunction such as increased adiposity and impaired energy dissipation; however, the transcriptional mechanisms regulating energy balance during late life stages have not yet been fully elucidated. Here, we show that ablation of the nuclear receptor PPARγ specifically in inguinal fat tissue in aging mice is associated with increased fat tissue expansion and insulin resistance. These metabolic effects are accompanied by decreased thermogenesis, reduced levels of brown fat genes, and browning of subcutaneous adipose tissue.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
March 2016
Obesity represents a major risk factor for the development of a number of metabolic disorders, including cardiovascular disease and type 2 diabetes. Since the discovery that brown and beige fat cells exist in adult humans and contribute to energy expenditure, increasing interest has been devoted to the understanding of the molecular switches turning on calorie utilization. It has been reported that the ability of thermogenic tissues to burn energy declines during aging, possibly contributing to the development of metabolic dysfunction late in life.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2016
Glucocorticoids (GCs) are widely prescribed anti-inflammatory agents, but their chronic use leads to undesirable side effects such as excessive expansion of adipose tissue. We have recently shown that the forkhead box protein A3 (Foxa3) is a calorie-hoarding factor that regulates the selective enlargement of epididymal fat depots and suppresses energy expenditure in a nutritional- and age-dependent manner. It has been demonstrated that Foxa3 levels are elevated in adipose depots in response to high-fat diet regimens and during the aging process; however no studies to date have elucidated the mechanisms that control Foxa3's expression in fat.
View Article and Find Full Text PDFObesity and diabetes are major health concerns worldwide. Western diets, often calorically rich, paired with sedentary habits are driving the current worldwide epidemic of pediatric and adult obesity. In addition, age related energy imbalances lead to increased adiposity and metabolic disorders later in life, making the middle aged population particularly susceptible.
View Article and Find Full Text PDFAltering the balance between energy intake and expenditure is a potential strategy for treating obesity and metabolic syndrome. Nonetheless, despite years of progress in identifying diverse molecular targets, biological-based therapies are limited. Here we demonstrate that heat shock factor 1 (HSF1) regulates energy expenditure through activation of a PGC1α-dependent metabolic program in adipose tissues and muscle.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2014
Aging is associated with increased adiposity and diminished thermogenesis, but the critical transcription factors influencing these metabolic changes late in life are poorly understood. We recently demonstrated that the winged helix factor forkhead box protein A3 (Foxa3) regulates the expansion of visceral adipose tissue in high-fat diet regimens; however, whether Foxa3 also contributes to the increase in adiposity and the decrease in brown fat activity observed during the normal aging process is currently unknown. Here we report that during aging, levels of Foxa3 are significantly and selectively up-regulated in brown and inguinal white fat depots, and that midage Foxa3-null mice have increased white fat browning and thermogenic capacity, decreased adipose tissue expansion, improved insulin sensitivity, and increased longevity.
View Article and Find Full Text PDFIncreasing evidence indicates that transcription and alternative splicing are coordinated processes; however, our knowledge of specific factors implicated in both functions during the process of adipocyte differentiation is limited. We have previously demonstrated that the zinc finger protein ZNF638 plays a role as a transcriptional coregulator of adipocyte differentiation via induction of PPARγ in cooperation with CCAAT/enhancer binding proteins (C/EBPs). Here we provide new evidence that ZNF638 is localized in nuclear bodies enriched with splicing factors, and through biochemical purification of ZNF638's interacting proteins in adipocytes and mass spectrometry analysis, we show that ZNF638 interacts with splicing regulators.
View Article and Find Full Text PDFThe recent surge in obesity has provided an impetus to better understand the mechanisms of adipogenesis, particularly in brown adipose tissue (BAT) because of its potential utilization for antiobesity therapy. Postnatal brown adipocytes arise from early muscle progenitors, but how brown fat lineage is determined is not completely understood. Here, we show that a multifunctional protein, Ewing Sarcoma (EWS), is essential for determining brown fat lineage during development.
View Article and Find Full Text PDFConversion of mesenchymal stem cells into terminally differentiated adipocytes progresses sequentially through regulated transcriptional steps. While it is clear that the late phases of adipocyte maturation are governed by the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ), less is known about the transcriptional control of the initial stages of differentiation. To identify early regulators, we performed a small interfering RNA (siRNA) screen of Forkhead-box genes in adipocytes and show here for the first time that the winged helix factor Foxa3 promotes adipocyte differentiation by cooperating with C/EBPβ and -δ to transcriptionally induce PPARγ expression.
View Article and Find Full Text PDFBiochim Biophys Acta
March 2014
The differentiation of uncommitted cells into specialized adipocytes occurs through a cascade of transcriptional events culminating in the induction and activation of the nuclear receptor PPARγ, the central coordinator of fat cell function. Since the discovery of PPARγ, two decades ago, our views of how this molecule is activated have been significantly refined. Beyond the cell, we also now know that diverse signals and regulators control PPARγ function in a fat-depot specific manner.
View Article and Find Full Text PDFAlthough erythropoietin (Epo) is the cytokine known to regulate erythropoiesis, erythropoietin receptor (EpoR) expression and associated activity beyond haematopoietic tissue remain uncertain. Here we show that mice with EpoR expression restricted to haematopoietic tissues (Tg) develop obesity and insulin resistance. Tg-mice exhibit a decrease in energy expenditure and an increase in white fat mass and adipocyte number.
View Article and Find Full Text PDFZinc finger proteins constitute the largest family of transcription regulators in eukaryotes. These factors are involved in diverse processes in many tissues, including development and differentiation. We report here the characterization of the zinc finger protein ZNF638 as a novel regulator of adipogenesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2010
Mitochondria and peroxisomes execute some analogous, nonredundant functions including fatty acid oxidation and detoxification of reactive oxygen species, and, in response to select metabolic cues, undergo rapid remodeling and division. Although these organelles share some components of their division machinery, it is not known whether a common regulator coordinates their remodeling and biogenesis. Here we show that in response to thermogenic stimuli, peroxisomes in brown fat tissue (BAT) undergo selective remodeling and expand in number and demonstrate that ectopic expression of the transcriptional coactivator PGC-1α recapitulates these effects on the peroxisomal compartment, both in vitro and in vivo.
View Article and Find Full Text PDFThe serum and glucocorticoid-inducible kinase 1 (SGK1) is an inducible kinase the physiological function of which has been characterized primarily in the kidney. Here we show that SGK1 is expressed in white adipose tissue and that its levels are induced in the conversion of preadipocytes into fat cells. Adipocyte differentiation is significantly diminished via small interfering RNA inhibition of endogenous SGK1 expression, whereas ectopic expression of SGK1 in mesenchymal precursor cells promotes adipogenesis.
View Article and Find Full Text PDFContext: Brown adipose tissue (BAT) found by positron emission/computed tomography (PET-CT) using flouro-deoxyglucose (FDG) is inducible by cold exposure in men. Factors leading to increased BAT are of great interest for its potential role in the treatment of diabetes and obesity.
Objective: We tested whether thyroid hormone (TH) levels are related to the volume and activity of BAT in a patient with a mutation in the insulin receptor gene.
Dendritic cells (DCs) are highly potent antigen-presenting cells (APCs) and play a vital role in stimulating naïve T cells. Treatment of human blood monocytes with the cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4 stimulates them to develop into immature dendritic cells (iDCs) in vitro. DCs generated by this pathway have a high capacity to prime and activate resting T cells and prominently express CD1 antigen-presenting molecules on the cell surface.
View Article and Find Full Text PDF