Self-emulsification is routinely used for oral delivery of lipophilic drugs in vivo, with the emulsion forming in vivo. We modified this technique to prepare novel oil-in-water emulsions of varying droplet size and composition on bench to enable adjuvanted vaccine delivery. We used these formulations to show that smaller droplets (20 nm) were much less effective as adjuvants for an influenza vaccine in mice than the emulsion droplet size of commercial influenza vaccine adjuvants (~160 nm).
View Article and Find Full Text PDFA rapidly acting, single dose vaccine against Staphylococcus aureus would be highly beneficial for patients scheduled for major surgeries or in intensive care units. Here we show that one immunization with a multicomponent S. aureus candidate vaccine, 4C-Staph, formulated with a novel TLR7-dependent adjuvant, T7-alum, readily protected mice from death and from bacterial dissemination, both in kidney abscess and peritonitis models, outperforming alum-formulated vaccine.
View Article and Find Full Text PDFStaphylococcus aureus (S. aureus) is an important opportunistic pathogen that may cause invasive life-threatening infections, like sepsis and pneumonia. Due to the increasing antibiotic resistance, the development of an effective vaccine against S.
View Article and Find Full Text PDFInduction of persistent protective immune responses is a key attribute of a successful vaccine formulation. MF59 adjuvant, an oil-in-water emulsion used in human vaccines, is known to induce persistent high-affinity functional Ab titers and memory B cells, but how it really shapes the Ag-specific B cell compartment is poorly documented. In this study, we characterized the Ab- and Ag-specific B cell compartment in wild-type mice immunized with HlaH35L, a Staphylococcus aureus Ag known to induce measurable functional Ab responses, formulated with MF59 or aluminum salts, focusing on germinal centers (GC) in secondary lymphoid organs.
View Article and Find Full Text PDFBoth active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S.
View Article and Find Full Text PDFAdjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically.
View Article and Find Full Text PDFBackground: Protein PIII is one of the major outer membrane proteins of Neisseria gonorrhoeae, 95% identical to RmpM (reduction modifiable protein M) or class 4 protein of Neisseria meningitidis. RmpM is known to be a membrane protein associated by non-covalent bonds to the peptidoglycan layer and interacting with PorA/PorB porin complexes resulting in the stabilization of the bacterial membrane. The C-terminal domain of PIII (and RmpM) is highly homologous to members of the OmpA family, known to have a role in adhesion/invasion in many bacterial species.
View Article and Find Full Text PDFThe innate immune pathways induced by adjuvants required to increase adaptive responses to influenza subunit vaccines are not well characterized. We profiled different TLR-independent (MF59 and alum) and TLR-dependent (CpG, resiquimod, and Pam3CSK4) adjuvants for the ability to increase the immunogenicity to a trivalent influenza seasonal subunit vaccine and to tetanus toxoid (TT) in mouse. Although all adjuvants boosted the Ab responses to TT, only MF59 and Pam3CSK4 were able to enhance hemagglutinin Ab responses.
View Article and Find Full Text PDFBackground: Pathogen recognition by dendritic cells (DC) is crucial for the initiation of both innate and adaptive immune responses. Activation of Toll-like Receptors (TLRs) by microbial molecular patterns leads to the maturation of DC, which present the antigen and activate T cells in secondary lymphoid tissues. Cytokine production by DC is critical for shaping the adaptive immune response by regulating T helper cell differentiation.
View Article and Find Full Text PDFCpG-containing oligodeoxynucleotides are potent mucosal adjuvants and effective as stand-alone treatment of respiratory infections in mice. Although CpG is also used as a type 1 helper immunomodulator in the treatment of asthma and allergic disease, immune modulation following intranasal application has not been fully characterized yet. Using a B-type CpG, we monitored RNA expression profiles, cytokine production and cellular activation in lung tissue and bronchoalveolar lavages ex vivo and cytokine production of purified cell populations in vitro.
View Article and Find Full Text PDFAluminum hydroxide (alum) and the oil-in-water emulsion MF59 are widely used, safe and effective adjuvants, yet their mechanism of action is poorly understood. We assessed the effects of alum and MF59 on human immune cells and found that both induce secretion of chemokines, such as CCL2 (MCP-1), CCL3 (MIP-1alpha), CCL4 (MIP-1beta), and CXCL8 (IL-8), all involved in cell recruitment from blood into peripheral tissue. Alum appears to act mainly on macrophages and monocytes, whereas MF59 additionally targets granulocytes.
View Article and Find Full Text PDFLTK63, a nontoxic mutant of Escherichia coli heat labile enterotoxin (LT), is a potent and safe mucosal adjuvant that has also been shown to confer generic protection to several respiratory pathogens. To understand the mechanisms of action underlying the LTK63 protective effect, we analyzed the molecular and cellular events triggered by its administration in vivo. We show here that LTK63 intrapulmonary administration induced in the mouse lung a specific gene expression signature characterized by the up-regulation of cell cycle genes, several host defense genes, chemokines, chemokine receptors, and immune cell-associated genes.
View Article and Find Full Text PDFOuter membrane protein As (OmpAs) are highly conserved proteins within the Enterobacteriaceae family. OmpA contributes to the maintenance of structural membrane integrity and invasion into mammalian cells. In Escherichia coli K1 OmpA also contributes to serum resistance and is involved in the virulence of the bacterium.
View Article and Find Full Text PDFMacrophage infectivity potentiators (MIPs) are a family of surface-exposed virulence factors of intracellular microorganisms such as Legionella, Chlamydia and Trypanosoma. These proteins display peptidyl-prolyl cis/trans isomerase (PPIase) activity that is inhibited by immunosuppressants FK506 and rapamycin. Here we describe the identification and characterization in Neisseria gonorrhoeae of Ng-MIP, a surface-exposed lipoprotein with high homology to MIPs.
View Article and Find Full Text PDF