Objectives: Nowadays, a wide variety of software for 3D reconstruction from CT scans is available; they differ for costs, capabilities, a priori knowledge, and, it is not trivial to identify the most suitable one for specific purposes. The article is aimed to provide some more information, having set up various metrics for the evaluation of different software's performance.
Methods: Metrics include software usability, segmentation quality, geometric accuracy, mesh properties and Dice Similarity Coefficient (DSC).
Introduction: Flatfoot is a condition commonly seen in children; however, there is general disagreement over its incidence, characterization and correction. Painful flatfoot accompanied with musculoskeletal and soft tissue problems requires surgery to avoid arthritis in adulthood, the most common surgical approach being two osteotomies to the calcaneus and medial cuneiform bones of the foot.
Objectives: This study focuses on the parametrization of these two bones to understand their bone morphology differences in a population sample among 23 normal subjects.
Polyether-ether-2-ketone (PEKK) is a high-performance thermoplastic polymer used in various fields, from aerospace to medical applications, due to its exceptional mechanical and thermal properties. Nonetheless, the mechanical behavior of 3D-printed PEKK still deserves to be more thoroughly investigated, especially in view of its production by 3D printing, where mechanical properties measured at different scales are likely to be correlated to one another and to all play a major role in determining biomechanical properties, which include mechanical strength on one side and osteointegration ability on the other side. This work explores the mechanical behavior of 3D-printed PEKK through a multiscale approach, having performed both nanoindentation tests and standard tensile and compression tests, where a detailed view of strain distribution was achieved through Digital Image Correlation (DIC) techniques.
View Article and Find Full Text PDFThe study of the spine range of motion under given external load has been the object of many studies in literature, finalised to a better understanding of the spine biomechanics, its physiology, eventual pathologic conditions and possible rehabilitation strategies. However, the huge amount of experimental work performed so far cannot be straightforwardly analysed due to significant differences among loading set-ups. This work performs a meta-analysis of various boundary conditions in literature, focusing on the flexion/extension behaviour of the lumbar spine.
View Article and Find Full Text PDFA catastrophic fracture of the radial carpal bone experienced by a racehorse during a Palio race was analyzed. Computational modelling of the carpal joint at the point of failure informed by live data was generated using a multibody code for dynamics simulation. The circuit design in a turn, the speed of the animal and the surface characteristics were considered in the model.
View Article and Find Full Text PDFObjective: To validate the use of a polyblend tape suture in equine laryngoplasty (PL).
Study Design: Experimental study.
Animals: Thirty-two cadaveric larynges.
Liver cells cultured in 3D bioreactors is an interesting option for temporary extracorporeal liver support in the treatment of acute liver failure and for animal models for preclinical drug screening. Bioreactor capacity to eliminate drugs is generally used for assessing cell metabolic competence in different bioreactors or to scale-up bioreactor design and performance for clinical or preclinical applications. However, drug adsorption and physical transport often disguise the intrinsic drug biotransformation kinetics and cell metabolic state.
View Article and Find Full Text PDFThe ovary is a dynamic mechanoresponsive organ. In vitro, tissue biomechanics was reported to affect follicle activation mainly through the Hippo pathway. Only recently, ovary responsiveness to mechanical signals was exploited for reproductive purposes.
View Article and Find Full Text PDFThe design of loading systems to test biologic samples is often challenging, due to shape variability and non-conventional loading set-ups. In addition to this, large economic investments would not be justified since the loading set up is usually designed for one single or for a limited range of applications. The object of this work is the development of a loading set-up finalised to on-site testing of sutures whose main function is applying a localised tensile load.
View Article and Find Full Text PDFIntramedullary nails constitute a viable alternative to extramedullary fixation devices; their use is growing in recent years, especially with reference to self-locking nails. Different designs are available, and it is not trivial to foresee the respective performances and to provide clinical indications in relation to the type of bone and fracture. In this work a numerical methodology was set up and validated in order to compare the mechanical behavior of two new nailing device concepts with one already used in clinic.
View Article and Find Full Text PDFImplant fixed dental prostheses are widely used for the treatment of edentulism, often preferred over the screw-retained ones. However, one of the main features of an implant-supported prosthesis is retrievability, which could be necessary in the case of implant complications. In this study, the retrievability of implant-fixed dental prostheses was investigated considering two of the main factors dental practitioners have to deal with: the abutments geometry and the luting agent.
View Article and Find Full Text PDFA number of surgical practices are aimed to compensate for tissue relaxation or weakened/atrophied muscles by means of suture prostheses/thread lifts. The success rate of these procedures is often very good in the short term, while it is quite variable among subjects and techniques in the middle-long term. Middle-long term failures are mostly related to suture distraction, loosening or wear, coming from repeated loading cycles.
View Article and Find Full Text PDFA number of applications in the surgical practice are based on tensile sutures aimed to keep soft tissues in place and compensate the exit of neuropathies, prolapses or general tissue relaxation. Long-term behaviour of these constructs need to be carefully examined in order to define tensile forces to be applied and to compare different suture anchors. Data here reported refer to equine laryngoplasties, where a suitable loading system has been designed in order to be able to test sutures in-sito, applying known forces ("On-site testing of sutured organs: an experimental set up to cyclically tighten sutures" (Pascoletti et al.
View Article and Find Full Text PDFCement-retained implant-supported prosthetics are gaining popularity compared to the alternative screw-retained type, a rise that serves to highlight the importance of retrievability. The aim of the present investigation is to determine the influence of luting agent, abutment height and taper angle on the retrievability of abutment-coping cementations. Abutments with different heights and tapers were screwed onto an implant and their cobalt-chrome copings were cemented on the abutments using three different luting agents.
View Article and Find Full Text PDFThe Marchetti-Vicenzi's nail is an intramedullary device where six curved nails are kept straight by a closing ring in order to allow their insertion into the medullary canal of a long bone; in a following step, these nails stabilize the fracture due to the ring withdrawal and to the consequent elastic expansion of the nails. Pre-clinical testing of this sort of device is strongly advocated in order to be able to foresee their stability inside the medullary canal and to quantify their stiffening action on a broken bone. In this numerical work, an MB (Multi Body) model of the device has been developed, with the dual purpose of evaluating forces between the bone and the system components during its progressive opening and verifying the behavior of the stabilized bone when it undergoes external loading.
View Article and Find Full Text PDFBackground: Tooth-supported fixed dentures are commonly used in restorative dentistry, and have definitely reached a high survival rate; nevertheless, their removal is sometimes required mainly due to caries or other failures (poor fit, poor cementation and so on). Removing a definitive partial denture is not trivial since the used cement is not always known and it may be very resistant; additionally, there are various clinical circumstances in which a conservative disassembly would be desirable.
Objective: assessing the performance of different tools for cement crowns retrieval in terms of reliability, learnability and efficiency.
The optimization of loading protocols following dental implant insertion requires setting up patient-specific protocols, customized according to the actual implant osseointegration, measured through quantitative, objective methods. Various devices for the assessment of implant stability as an indirect measure of implant osseointegration have been developed. They are analyzed here, introducing the respective physical models, outlining major advantages and critical aspects, and reporting their clinical performance.
View Article and Find Full Text PDFObjective: To investigate the influence of implant design on the change in the natural frequency of bone-implant system during osseointegration by means of a modal 3D finite element analysis.
Methods: Six implants were considered. Solid models were obtained by means of reverse engineering techniques.
Finite element models in conjunction with adequate constitutive relations are pivotal in several physiological and medical applications related to both native and engineered tissues, allowing to predict the tissue response under various loading states. In order to get reliable results, however, the validation of the constitutive models is crucial. Therefore, the main purpose of this work is to provide an experimental-computational approach to the biomechanical investigation of soft tissues such as the dermis.
View Article and Find Full Text PDFMuscles Ligaments Tendons J
April 2018
Unlabelled: The elbow ligamentous and bony structures play essential roles in the joint stability. Nevertheless, the contribution of different structures to joint stability is not yet clear and a comprehensive experimental investigation into the ligament and osseous constraints changes in relation to joint motions would be uphill and somehow unattainable, due to the impossibility of obtaining all the possible configurations on the same specimen. Therefore, a predictive tool of the joint behavior after the loss of retentive structures would be helpful in designing reconstructive surgeries and in pre-operative planning.
View Article and Find Full Text PDFObjective: To assess the influence of implant thread shape and inclination on the mechanical behaviour of bone-implant systems. The study assesses which factors influence the initial and full osseointegration stages.
Methods: Point clouds of the original implant were created using a non-contact reverse engineering technique.