Publications by authors named "Elisabetta Fanizza"

Optoelectronic devices combining single-layer graphene (SLG) and colloidal semiconducting nanocrystal (NC) heterojunctions have recently gained significant attention as efficient hybrid photodetectors. While most research has concentrated on systems using heavy metal-based semiconductor NCs, there is a need for further exploration of environmentally friendly nanomaterials, such as CuS. Chemical ligands play a crucial role in these hybrid photodetectors, as they enable charge transfer between the NCs and SLG.

View Article and Find Full Text PDF

Shedding light on the interaction between inorganic nanoparticles (NPs) and living microorganisms is at the basis of the development of biohybrid technologies with improved performance. Au NPs have been shown to be able to improve the extracellular electron transfer (EET) in intact bacterial cells interfaced with an electrode; however, detailed information on the role of NP-surface properties in their interaction with bacterial membranes is still lacking. Herein, we unveil how the surface functionalization of Au NPs influences their interaction with photosynthetic bacteria, focusing on cell morphology, growth kinetics, NPs localization, and electrocatalytic performance.

View Article and Find Full Text PDF

In recent years, the progress toward lighting miniaturization is focused on luminescent nanomaterials. Among them, fluorescent carbon dots (CDs) are receiving increasing attention thanks to their astonishing optical properties complemented by their intrinsic biocompatibility and low toxicity. The CDs can be easily dispersed in water, organic solvents or incorporated in polymeric matrices, preserving their emission properties.

View Article and Find Full Text PDF
Article Synopsis
  • The study develops nanostructures made of PEG-grafted phospholipids to co-encapsulate vitamin D3 and alendronic acid for better targeting of bone tissue.
  • The nanostructures are made optically traceable using carbon dots, which are biocompatible and resistant to photobleaching, allowing for potential future imaging studies.
  • Research includes optimization of structure size and stability while assessing their ability to bind to bone's inorganic component, suggesting they could be used for treating skeletal issues in cancer patients.
View Article and Find Full Text PDF

In recent years, colloidal lead halide perovskite (LHP) nanocrystals (NCs) have exhibited such intriguing light absorption properties to be contemplated as promising candidates for photocatalytic conversions. However, for effective photocatalysis, the light harvesting system needs to be stable under the reaction conditions propaedeutic to a specific transformation. Unlike photoinduced oxidative reaction pathways, photoreductions with LHP NCs are challenging due to their scarce compatibility with common hole scavengers like amines and alcohols.

View Article and Find Full Text PDF

Different types of milk are used in the production of milk kefir, but little information is available on the release of potentially antioxidant exopolysaccharides (EPS). The aim of this study was to investigate whether the microbial dynamics and EPS release are dependent on the milk substrate. In our study, the inoculated microbial consortium was driven differently by each type of milk (cow, ewe, and goat).

View Article and Find Full Text PDF

Over the last decade, the attractive properties of CsPbBr nanoparticles (NPs) have driven ever-increasing progress in the development of synthetic procedures to obtain high-quality NPs at high concentrations. Understanding how the properties of NPs are influenced by the composition of the reaction mixture in combination with the specific synthetic methodology is crucial, both for further elucidating the fundamental characteristics of this class of materials and for their manufacturing towards technological applications. This work aims to shed light on this aspect by synthesizing CsPbBr NPs by means of two well-assessed synthetic procedures, namely, hot injection (HI) and ligand-assisted reprecipitation (LARP) in non-polar solvents, using PbBr and CsCO as precursors in the presence of already widely investigated ligands.

View Article and Find Full Text PDF

Carbon dots are carbon-based nanoparticles renowned for their intense light-emitting capabilities covering the whole visible light range. Achieving carbon dots emitting in the red region with high efficiency is extremely relevant due to their huge potential in biological applications and in optoelectronics. Currently, photoluminescence in such an energy interval is often associated with polyheterocyclic molecular domains forming during the synthesis that, however, present low emission efficiency and issues in controlling the optical features.

View Article and Find Full Text PDF

Inflammasome activation plays a crucial role in the progression to more severe stages of non-alcoholic fatty liver disease (NAFLD), representing a promising therapeutic target. MCC950 is a small molecule acting as a potent and specific inhibitor of the canonical and non-canonical activation of the NLRP3 inflammasome, but its short plasmatic half-life limits its use. Herein, we report, for the first time, the encapsulation of MCC950 in poly(ethylene glycol) (PEG) liposomes (LPs) that are specifically functionalized with an antibody against Frizzled 1 (FZD1), a g-coupled protein involved in the WNT pathway and overexpressed on inflammasome-activated macrophages.

View Article and Find Full Text PDF

The removal of pollutants, such as heavy metals, aromatic compounds, dyes, pesticides and pharmaceuticals, from water is still an open challenge. Many methods have been developed and exploited for the purification of water from contaminants, including photocatalytic degradation, biological treatment, adsorption and chemical precipitation. Absorption-based techniques are still considered among the most efficient and commonly used approaches thanks to their operational simplicity.

View Article and Find Full Text PDF

Functionalization of colloidal nanoparticles with organic dyes, which absorb photons in complementary spectral ranges, brings a synergistic effect for harvesting additional light energy. Here, we show functionalization of near-infrared (NIR) plasmonic nanoparticles (NPs) of bare and amino-group functionalized mesoporous silica-coated copper sulphide (CuS@MSS and CuS@MSS-NH) with specific tricarbocyanine NIR dye possessing sulfonate end groups. The role of specific surface chemistry in dye assembling on the surface of NPs is demonstrated, depending on the organic polar liquids or water used as a dispersant solvent.

View Article and Find Full Text PDF

Carbon Dots (CDs) are fluorescent carbon-based nanoparticles that have attracted increasing attention in recent years as environment-friendly and cost-effective fluorophores. An application that can benefit from CDs in a relatively short-term perspective is the fabrication of color-converting materials in phosphor-converted white LEDs (WLEDs). In this work we present a one-pot solvothermal synthesis of polymer-passivated CDs that show a dual emission band (in the green and in the red regions) upon blue light excitation.

View Article and Find Full Text PDF

A novel hybrid nanocomposite formed of carboxylated Nano Graphene Oxide (c-NGO), highly densely decorated by monodisperse citrate-coated Au nanoparticles (c-NGO/Au NPs), is synthesized and thoroughly characterized for photothermal applications. A systematic investigation of the role played by the synthetic parameters on the Au NPs decoration of the c-NGO platform is performed, comprehensively studying spectroscopic and morphological characteristics of the achieved nanostructures, thus elucidating their still not univocally explained synthesis mechanism. Remarkably, the Au NPs coating density of the c-NGO sheets is much higher than state-of-the-art systems with analogous composition prepared with different approaches, along with a higher NPs size dispersion.

View Article and Find Full Text PDF

Plasmonic nanostructures, featuring near infrared (NIR)-absorption, are rising as efficient nanosystems for in vitro photothermal (PT) studies and in vivo PT treatment of cancer diseases. Among the different materials, new plasmonic nanostructures based on CuS nanocrystals (NCs) are emerging as valuable alternatives to Au nanorods, nanostars and nanoshells, largely exploited as NIR absorbing nanoheaters. Even though CuS plasmonic properties are not linked to geometry, the role played by their size, shape and surface chemistry is expected to be fundamental for an efficient PT process.

View Article and Find Full Text PDF

CsPbBr nanocrystals (NCs) passivated by conventional lipophilic capping ligands suffer from colloidal and optical instability under ambient conditions, commonly due to the surface rearrangements induced by the polar solvents used for the NC purification steps. To avoid onerous postsynthetic approaches, ascertained as the only viable stability-improvement strategy, the surface passivation paradigms of as-prepared CsPbBr NCs should be revisited. In this work, the addition of an extra halide source (8-bromooctanoic acid) to the typical CsPbBr synthesis precursors and surfactants leads to the formation of a zwitterionic ligand already before cesium injection.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) can independently replicate in the central nervous system (CNS) causing neurocognitive impairment even in subjects with suppressed plasma viral load. The antiretroviral drug darunavir (DRV) has been approved for therapy of HIV-infected patients, but its efficacy in the treatment of HIV-associated neurological disorders (HAND) is limited due to the low penetration through the blood-brain barrier (BBB). Therefore, innovations in DRV formulations, based on its encapsulation in optically traceable nanoparticles (NPs), may improve its transport through the BBB, providing, at the same time, optical monitoring of drug delivery within the CNS.

View Article and Find Full Text PDF
Article Synopsis
  • Frizzled (FZD) proteins act as key receptors in Wnt signaling, impacting MAPK pathways that can become dysfunctional in colorectal and gastric cancers.
  • Upregulated levels of the FZD10 protein in exosomes from the plasma of cancer patients correlate with poor prognosis and match expression levels in tumor tissues.
  • Silencing FZD10 reduces expression of cancer-related markers, suggesting that FZD10 in exosomes could serve as a valuable biomarker for diagnosing and predicting outcomes in colorectal and gastric cancers.
View Article and Find Full Text PDF

Hypothesis: Solid lipid nanoparticles (SLNs), co-encapsulating superparamagnetic iron oxide nanoparticles and sorafenib, have been exploited for magnetic-guided drug delivery to the liver. Two different magnetic configurations, both comprising two small magnets, were under-skin implanted to investigate the effect of the magnetic field topology on the magnetic SLNP accumulation in liver tissues. A preliminary simulation analysis was performed to predict the magnetic field topography for each tested configuration.

View Article and Find Full Text PDF

Mesoporous silica nanostructures (MSNs) attract high interest due to their unique and tunable physical chemical features, including high specific surface area and large pore volume, that hold a great potential in a variety of fields, i.e., adsorption, catalysis, and biomedicine.

View Article and Find Full Text PDF

Stable cesium lead bromide perovskite nanocrystals (NCs) showing a near-unity photoluminescence quantum yield (PLQY), narrow emission profile, and tunable fluorescence peak in the green region can be considered the ideal class of nanomaterials for optoelectronic applications. However, a general route for ensuring the desired features of the perovskite NCs is still missing. In this paper, we propose a synthetic protocol for obtaining near-unity PLQY perovskite nanocubes, ensuring their size control and, consequently, a narrow and intense emission through the modification of the reaction temperature and the suitable combination ratio of the perovskite constituting elements.

View Article and Find Full Text PDF

Exosomes belong to the family of extracellular vesicles released by every type of cell both in normal and pathological conditions. Growing interest in studies indicates that extracellular vesicles, in particular, the fraction named exosomes containing lipids, proteins and nucleic acid, represent an efficient way to transfer functional cargoes between cells, thus combining all the other cell-cell interaction mechanisms known so far. Only a few decades ago, the involvement of exosomes in the carcinogenesis in different tissues was discovered, and very recently it was also observed how they carry and modulate the presence of Wnt pathway proteins, involved in the carcinogenesis of gastrointestinal tissues, such as Frizzled 10 protein (FZD10), a membrane receptor for Wnt.

View Article and Find Full Text PDF

Efficient FRET systems are developed combining colloidal CdSe quantum dots (QDs) donors and BODIPY acceptors. To promote effective energy transfer in FRET architectures, the distance between the organic fluorophore and the QDs needs to be optimized by a careful system engineering. In this context, BODIPY dyes bearing amino-terminated functionalities are used in virtue of the high affinity of amine groups in coordinating the QD surface.

View Article and Find Full Text PDF

Carbon dots (CDs) have been progressively attracting interest as novel environmentally friendly and cost-effective luminescent nanoparticles, for implementation in light-emitting devices, solar cells, photocatalytic devices and biosensors. Here, starting from a cost-effective bottom-up synthetic approach, based on a suitable amphiphilic molecule as carbon precursor, namely cetylpyridinium chloride (CPC), green-emitting CDs have been prepared at room temperature, upon treatment of CPC with concentrated NaOH solutions. The investigated method allows the obtaining, in one-pot, of both water-dispersible (W-CDs) and oil-dispersible green-emitting CDs (O-CDs).

View Article and Find Full Text PDF

The ongoing interest in all-inorganic cesium lead bromide perovskite nanocrystals (CsPbBr3 NCs) is mainly due to their optical properties, in particular their high photoluminescence quantum yields (PLQYs). Three-precursor synthetic methods, in which the sources of the three elements (cesium, lead and bromine) constituting the perovskite scaffold are chemically independent, often succeed in the achievement of near-unity PLQY perovskite NCs. However, this class of synthetic approaches precludes the accessibility to crystal morphologies different from the traditional cuboidal ones.

View Article and Find Full Text PDF