With the progress of sequencing technologies, an ever-increasing number of variants of unknown functional and clinical significance (VUS) have been identified in both coding and non-coding regions of the main Breast Cancer (BC) predisposition genes. The aim of this study is to identify a mutational profile of coding and intron-exon junction regions of 12 moderate penetrance genes (, , , , , , , , , , , ) in a cohort of 450 Italian patients with Hereditary Breast/Ovarian Cancer Syndrome, for germline mutation in genes. The analysis was extended to 5'UTR and 3'UTR of all the genes listed above and to the BRCA1 and BRCA2 known regulatory regions in a subset of 120 patients.
View Article and Find Full Text PDFIn this study, we determined if BRCA1 partners involved in DNA double-strand break (DSB) and mismatch repair (MMR) may contribute to breast and ovarian cancer development. Taking advantage the functional conservation of DNA repair pathways between yeast and human, we expressed several BRCA1 missense variants in DNA repair yeast mutants to identify functional interaction between BRCA1 and DNA repair in BRCA1-induced genome instability. The pathogenic p.
View Article and Find Full Text PDFBRCA1 interacts with several proteins implicated in homologous and non homologous recombination and in mismatch repair. The aim of this study is to determine if MSH2, a well known partner of BRCA1 involved in DNA repair, may contribute to breast and ovarian cancer development and progression. To better understand the functional interaction between BRCA1 and MSH2, we studied the effect of the deletion of MSH2 gene on BRCA1-induced genome instability in yeast.
View Article and Find Full Text PDFThe study of BRCA1 and BRCA2 genes and their alterations has been essential to the understanding of the development of familial breast and ovarian cancers. Many of the variants identified have an unknown pathogenic significance. These include variants which determine alternative mRNA splicing, identified in the intronic regions and those are capable of destroying the splicing ability.
View Article and Find Full Text PDFThe tumour-suppressor gene BRCA2 has been demonstrated to be involved in maintenance of genome integrity by affecting DNA double-strand break repair and homologous recombination. Protein-truncating mutations in BRCA2 predispose women to early onset breast and ovarian cancers and account for 15-30% of familial breast cancer risk. In contrast, the human cancer risk due to missense mutations, intronic variants, and in-frame deletions and insertions in the BRCA2 gene, called unclassified variants, has not been determined.
View Article and Find Full Text PDFObjective: Breast cancer is the most common female cancer in Morocco. About 5 to 10% are due to hereditary predisposition and mutations in BRCA1 and BRCA2 genes are responsible for an important proportion of high-risk breast/ovarian cancer families. The relevance of BRCA1/2 mutations in the Moroccan population was not studied.
View Article and Find Full Text PDFBARD1 (BRCA1-associated RING domain) is the dominant binding partner of BRCA1 in vivo. The BARD1 gene has been reported to be mutated in a subset of breast and ovarian cancer patients and BARD1 germ-line mutations have been identified in breast cancer patients negative for BRCA1 or BRCA2 gene alterations. In the present study, we show by RT-PCR and direct sequencing analysis the occurrence of seven novel and one previously identified BARD1 splicing variants in human lymphocytes and breast cancers.
View Article and Find Full Text PDFAlterations in BRCA1 and BRCA2 genes account for a large proportion of hereditary breast and ovarian cancers. Mutations and variants of unknown pathological significance have been identified in both genes; however, most of them have been studied only at the genomic level, and their effect on mRNA expression remains unknown. We identified two BRCA1 and six BRCA2 splice site variants, and one BRCA2 alteration at exon 14.
View Article and Find Full Text PDF