Open-conduit basaltic volcanoes can be characterised by sudden large explosive events (paroxysms) that interrupt normal effusive and mild explosive activity. In June-August 2019, one major explosion and two paroxysms occurred at Stromboli volcano (Italy) within only 64 days. Here, via a multifaceted approach using clinopyroxene, we show arrival of mafic recharges up to a few days before the onset of these events and their effects on the eruption pattern at Stromboli, as a prime example of a persistently active, open-conduit basaltic volcano.
View Article and Find Full Text PDFIdentifying accurate topographic variations associated with volcanic eruptions plays a key role in obtaining information on eruptive parameters, volcano structure, input data for volcano processes modelling, and civil protection and recovery actions. The 2021 eruption of Cumbre Vieja volcano is the largest eruptive event in the recorded history for La Palma Island. Over the course of almost 3 months, the volcano produced profound morphological changes in the landscape affecting both the natural and the anthropic environment over an area of tens of km.
View Article and Find Full Text PDFIn 2019, Stromboli volcano experienced one of the most violent eruptive crises in the last hundred years. Two paroxysmal explosions interrupted the 'normal' mild explosive activity during the tourist season. Here we integrate visual and field observations, textural and chemical data of eruptive products, and numerical simulations to analyze the eruptive patterns leading to the paroxysmal explosions.
View Article and Find Full Text PDFMost of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕ) ranging 10-10 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling.
View Article and Find Full Text PDF