Commercial starter cultures, composed of high concentrations of a few species/strains of lactic acid bacteria (LAB), selected based on their strong technological aptitudes, have been developed to easily and safely carry out food fermentations. Frequently applied to industrial productions, selected starter LAB easily become the dominant microbiota of products, causing a dramatic decrease in biodiversity. On the contrary, natural starter cultures, which usually characterize the most typical and Protected Designation of Origin (PDO) food products, are constituted by a multitude and an indefinite number of LAB species and strains, both starter and nonstarter, thus contributing to preserving microbial biodiversity.
View Article and Find Full Text PDFThe use of biodiverse autochthonous natural starter cultures to produce typical and PDO cheeses contributes to establishing a link between products and territory of production, which commercial starters, constituted by few species and strains, are not able to. The purpose of this work was the assessment of biodiversity, at strain level, and safety of natural cultures whose use is mandatory for the Pecorino Romano PDO cheese manufacturing, according to its product specification. The biodiversity of three , collected in the 1960s and preserved in lyophilised form, was assessed by molecular biotyping using both PFGE and (GTG) rep-PCR profiling on 209 isolates belonging to (30), subsp.
View Article and Find Full Text PDFPreservation of cheese microbiota biodiversity is central to the sensory quality of traditional and PDO cheeses. Lyophilized commercial selected starters, being advantageous in terms of cells concentration, are supplanting natural cultures causing important loss of microbial biodiversity in the dairy environment. Biodiversity could be recovered using natural starter cultures, however their cells concentration after propagation is lower than the commercial ones.
View Article and Find Full Text PDFTwenty-seven strains, and the undefined starter for table olives from which they were isolated, were characterised for their technological properties: tolerance to low temperature, high salt concentration, alkaline pH, and olive leaf extract; acidifying ability; oleuropein degradation; hydrogen peroxide and lactic acid production. Two strains with appropriate technological properties were selected. Then, table olive fermentation in vats, with the original starter, the selected strains, and without starter (spontaneous fermentation) were compared.
View Article and Find Full Text PDFThe aim of this study was to evaluate the susceptibility of 197 isolates of Lactobacillus paracasei, isolated from Italian fermented products coming from different geographical areas, to tetracycline and erythromycin, two antimicrobials widely used in clinical and animal therapy. Isolation media were supplemented with antibiotics according to the microbiological breakpoints (BPs) defined by European Food Safety Authority (EFSA). Isolates were identified at the species level and were typed by rep-PCR using the (GTG)(5) primer.
View Article and Find Full Text PDF