Nine phenol derivatives, p-coumaric acid (PC), vanillin (V), acetovanillone (AV), acetosyringone (AS), syringaldehyde (SA), coniferaldehyde (CLD), ferulic acid (FRC), sinapic acid (SNC), and sinapyl aldehyde (SLD) were assayed as laccase redox mediators in the biobleaching of kenaf and sisal pulps. As a general behaviour, the phenolic mediators increased the kappa number (KN) and reduced the brightness of pulps. In particular, these changes were found to depend in a linear manner on the energy of the highest occupied molecular orbital (E(HOMO)) of the mediators.
View Article and Find Full Text PDFFunctionalization of sisal specialty pulp fibers by laccase-catalysed grafting of ferulic acid (FRC) was investigated. To this end, the extent of phenol coupling to fibers under different reaction conditions (laccase and FRC rates, and time) was evaluated in terms of pulp properties including kappa number (expressed as the combined contributions of lignin and hexenuronic acids), brightness, Klason lignin and surface anionic charge after Soxhlet extraction of acetone-treated pulp. The specific treatment resulting in the highest degree of grafting was then used in a comparative study of the effects of applying the laccase-FRC system to refined and unrefined pulp with a view to confirming whether the increased surface area obtained by effect of fibrillation would lead to enhanced grafting.
View Article and Find Full Text PDFFlax and sisal pulps were treated with two laccases (from Pycnoporus cinnabarinus, PcL and Trametes villosa, TvL, respectively), in the presence of different phenolic compounds (syringaldehyde, acetosyringone and p-coumaric acid in the case of flax pulp, and coniferaldehyde, sinapaldehyde, ferulic acid and sinapic acid in the case of sisal pulp). In most cases the enzymatic treatments resulted in increased kappa number of pulps suggesting the incorporation of the phenols into fibres. The covalent binding of these compounds to fibres was evidenced by the analysis of the treated pulps, after acetone extraction, by pyrolysis coupled with gas chromatography/mass spectrometry in the absence and/or in the presence of tetramethylammonium hydroxide (TMAH) as methylating agent.
View Article and Find Full Text PDFThe effects of laccase-natural mediator systems (LMS) on sisal pulp and their potential for either biobleaching or functionalizing (via radical-coupling) its fibres were investigated. The enzyme treatment (L stage) was followed by extraction with hydrogen peroxide in order to determine whether observable effects could be enhanced by removing LMS-modified lignin. Four different plant phenols [viz.
View Article and Find Full Text PDF