Transient loss of smell is a common symptom of influenza and other upper respiratory infections. Loss of taste is possible but rare with these illnesses, and patient reports of 'taste loss' typically arise from a taste / flavor confusion. Thus, initial reports from COVID-19 patients of loss of taste and chemesthesis (i.
View Article and Find Full Text PDFAnosmia is common with respiratory virus infections, but loss of taste or chemesthesis is rare. Reports of true taste loss with COVID-19 were viewed skeptically until confirmed by multiple studies. Nasal menthol thresholds are elevated in some with prior COVID-19 infections, but data on oral chemesthesis are lacking.
View Article and Find Full Text PDFMany widely used psychophysical olfactory tests have limitations that can create barriers to adoption. For example, tests that measure the ability to identify odors may confound sensory performance with memory recall, verbal ability, and prior experience with the odor. Conversely, classic threshold-based tests avoid these issues, but are labor intensive.
View Article and Find Full Text PDFPurpose: Many widely-used psychophysical tests of olfaction have limitations that can create barriers to adoption outside research settings. For example, tests that measure the ability to identify odors may confound sensory performance with memory recall, verbal ability, and past experience with the odor. Conversely, threshold-based tests typically avoid these issues, but are labor intensive.
View Article and Find Full Text PDFIn March 2020, the Global Consortium of Chemosensory Research (GCCR) was founded by chemosensory researchers to address emerging reports of unusual smell and taste dysfunction arising from the SARS-CoV-2 pandemic. Over the next year, the GCCR used a highly collaborative model, along with contemporary Open Science practices, to produce multiple high impact publications on chemosensation and COVID19. This invited manuscript describes the founding of the GCCR, the tools and approaches it used, and a summary of findings to date.
View Article and Find Full Text PDFBiogenesis of translation-competent 80S ribosomes is a multi-step process requiring the sequential action of non-ribosomal trans-acting factors. We previously identified the human PELP1-TEX10-WDR18 complex and the associated SUMO isopeptidase SENP3 as regulators of 60S maturation. We provided evidence that deconjugating SUMO from PELP1 by SENP3 is instrumental for proper ribosome biogenesis.
View Article and Find Full Text PDF