Publications by authors named "Elisabeth Warnke"

Background/aims: Spaceflight impacts on the function of the thyroid gland in vivo. In vitro normal and malignant thyrocytes assemble in part to multicellular spheroids (MCS) after exposure to the random positioning machine (RPM), while a number of cells remain adherent (AD). We aim to elucidate possible differences between AD and MCS cells compared to 1g-controls of normal human thyroid cells.

View Article and Find Full Text PDF

Microgravity induces three-dimensional (3D) growth in numerous cell types. Despite substantial efforts to clarify the underlying mechanisms for spheroid formation, the precise molecular pathways are still not known. The principal aim of this paper is to compare static 1g-control cells with spheroid forming (MCS) and spheroid non-forming (AD) thyroid cancer cells cultured in the same flask under simulated microgravity conditions.

View Article and Find Full Text PDF

Three-dimensional multicellular spheroids (MCS) of human cells are important in cancer research. We investigated possible mechanisms of MCS formation of thyroid cells. Both, normal Nthy-ori 3-1 thyroid cells and the poorly differentiated follicular thyroid cancer cells FTC-133 formed MCS within 7 and 14 days of culturing on a Random Positioning Machine (RPM), while a part of the cells continued to grow adherently in each culture.

View Article and Find Full Text PDF

In this study we focused on gravity-sensitive proteins of two human thyroid cancer cell lines (ML-1; RO82-W-1), which were exposed to a 2D clinostat (CLINO), a random positioning machine (RPM) and to normal 1g-conditions. After a three (3d)- or seven-day-culture (7d) on the two devices, we found both cell types growing three-dimensionally within multicellular spheroids (MCS) and also cells remaining adherent (AD) to the culture flask, while 1g-control cultures only formed adherent monolayers, unless the bottom of the culture dish was covered by agarose. In this case, the cytokines IL-6 and IL-8 facilitated the formation of MCS in both cell lines using the liquid-overlay technique at 1g.

View Article and Find Full Text PDF

Background: Chondrocytes are the main cellular component of articular cartilage. In healthy tissue, they are embedded in a strong but elastic extracelluar matrix providing resistance against mechanical forces and friction for the joints. Osteoarthritic cartilage, however, disrupted by heavy strain, has only very limited potential to heal.

View Article and Find Full Text PDF

Neo-angiogenesis is a critical process for tumor growth and invasion and has become a promising target in cancer therapy. This manuscript reviews three currently relevant anti-angiogenic agents targeting the vascular endothelial growth factor system: bevacizumab, ramucirumab and sorafenib. The efficacy of anti-angiogenic drugs in adjuvant therapy or as neo-adjuvant treatment has been estimated in clinical trials of advanced breast cancer.

View Article and Find Full Text PDF

Background: Multicellular tumor spheroids (MCTS) formed scaffold-free under microgravity are of high interest for research and medicine. Their formation mechanism can be studied in space in real microgravity or on Earth using ground-based facilities (GBF), which simulate microgravity. On Earth, these experiments are more cost-efficient and easily performable.

View Article and Find Full Text PDF

The multikinase inhibitor sunitinib (S) seems to have promising potential in the treatment of thyroid cancer. We focused on the impact of S and/or irradiation (R) on mechanisms of apoptosis in follicular thyroid cancer cells. The effects of R, S and their combination were evaluated 2 and 4 days after treatment, using the human thyroid cancer cell line CGTH W-1.

View Article and Find Full Text PDF

Background/aims: Thyroid cancer accounts for about 1% of all cancer cases. Multikinase inhibitors like sunitinib (S) have a promising potential in thyroid cancer therapy. Therefore, the principal aim of this study was to investigate the impact of sunitinib on the secretion of cytokines of follicular thyroid cancer cells.

View Article and Find Full Text PDF