Objectives: The dentato-rubro-thalamic tract (DRTT) has been found to play a major role in the mechanisms of tremor alleviation by deep brain stimulation (DBS) in essential tremor (ET). Still, the influence of the two different parts of the DRTT, consisting of crossing and nondecussating fibers, is not yet clear with respect to tremor reduction. The aim of this study was to assess the influence of the crossing and the nondecussating part of the DRTT on tremor control in ET.
View Article and Find Full Text PDFTractography based on diffusion-weighted magnetic resonance imaging (DWI) models the structural connectivity of the human brain. Deep brain stimulation (DBS) targeting the subthalamic nucleus is an effective treatment for advanced Parkinson's disease, but may induce adverse effects. This study investigated the relationship between structural connectivity patterns of DBS electrodes and stimulation-induced side effects.
View Article and Find Full Text PDFObjective: Subthalamic deep brain stimulation may alleviate bradykinesia in Parkinson patients. Research suggests that this stimulation effect may be mediated by brain networks like the corticocerebellar loop. This study investigated the connectivity between stimulation sites and cortical and subcortical structures to identify connections for effective stimulation.
View Article and Find Full Text PDF