Publications by authors named "Elisabeth Stes"

Article Synopsis
  • The synthetic strigolactone analog, rac-GR24, plays a crucial role in studying how strigolactones and karrikins influence plant signaling pathways by activating specific receptors (D14 and KAI2).
  • Treatment with rac-GR24 impacts root structure by reducing lateral root density while enhancing root hair growth and increasing flavonol levels.
  • Research findings indicate that transcription factors like HY5 and MYB12 regulate flavonol production and root hair elongation, with additional regulators identified that influence lateral root density responses to rac-GR24 treatment.
View Article and Find Full Text PDF

Plants respond to mild warm temperature conditions by increased elongation growth of organs to enhance cooling capacity, in a process called thermomorphogenesis. To this date, the regulation of thermomorphogenesis has been exclusively shown to intersect with light signalling pathways. To identify regulators of thermomorphogenesis that are conserved in flowering plants, we map changes in protein phosphorylation in both dicots and monocots exposed to warm temperature.

View Article and Find Full Text PDF

Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-TERMINALLY ENCODED PEPTIDE 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses.

View Article and Find Full Text PDF

The target of rapamycin (TOR) kinase is a conserved regulatory hub that translates environmental and nutritional information into permissive or restrictive growth decisions. Despite the increased appreciation of the essential role of the TOR complex in plants, no large-scale phosphoproteomics or interactomics studies have been performed to map TOR signalling events in plants. To fill this gap, we combined a systematic phosphoproteomics screen with a targeted protein complex analysis in the model plant Arabidopsis thaliana.

View Article and Find Full Text PDF

Plant health and development are directly depending on a plant's ability to react to a constantly changing environment. Sensing of water and nutrition levels and of the biotic environment is vital for a plant, making the root one of the key plant organs. Proteins are the key molecules that play numerous roles in a cell's everyday life.

View Article and Find Full Text PDF

Wheat is a cereal grain and one of the world's major food crops. Recent advances in wheat genome sequencing are by now facilitating its genomic and proteomic analyses. However, little is known about possible differences in total protein levels of hexaploid versus tetraploid wheat cultivars, and also knowledge of phosphorylated wheat proteins is still limited.

View Article and Find Full Text PDF

Detection of (neo-)N-terminal peptides is essential for identifying protease cleavage sites . We here present an update of a well-established and efficient selection method for enriching N-terminal peptides out of peptide mixtures: N-terminal COFRADIC (COmbined FRActional DIagonal Chromatography). This method is based on the old concept of diagonal chromatography, which involves a peptide modification step in between otherwise identical chromatographic separations, with this modification step finally allowing for the isolation of N-terminal peptides by longer retention of non-N-terminal peptides on the resin.

View Article and Find Full Text PDF

The first signaling peptide discovered and purified was insulin in 1921. However, it was not until 1991 that the first peptide signal, systemin, was discovered in plants. Since the discovery of systemin, peptides have emerged as a potent and diverse class of signaling molecules in plant systems.

View Article and Find Full Text PDF

Protein phosphorylation is one of the most common post-translational modifications (PTMs), which can regulate protein activity and localization as well as protein-protein interactions in numerous cellular processes. Phosphopeptide enrichment techniques enable plant researchers to acquire insight into phosphorylation-controlled signaling networks in various plant species. Most phosphoproteome analyses of plant samples still involve stable isotope labeling, peptide fractionation, and demand a lot of mass spectrometry (MS) time.

View Article and Find Full Text PDF

Strigolactones are plant metabolites that act as phytohormones and rhizosphere signals. Whereas most research on unraveling the action mechanisms of strigolactones is focused on plant shoots, we investigated proteome adaptation during strigolactone signaling in the roots of Arabidopsis thaliana. Through large-scale, time-resolved, and quantitative proteomics, the impact of the strigolactone analog rac-GR24 was elucidated on the root proteome of the wild type and the signaling mutant more axillary growth 2 (max2).

View Article and Find Full Text PDF

Roots explore the soil for water and nutrients through the continuous production of lateral roots. Lateral roots are formed at regular distances in a steadily elongating organ, but how future sites for lateral root formation become established is not yet understood. Here, we identified C-TERMINALLY ENCODED PEPTIDE 5 (CEP5) as a novel, auxin-repressed and phloem pole-expressed signal assisting in the formation of lateral roots.

View Article and Find Full Text PDF

Strigolactones control various aspects of plant development, including root architecture. Here, we review how strigolactones act in the root and survey the strigolactone specificity of signaling components that affect root development. Strigolactones are a group of secondary metabolites produced in plants that have been assigned multiple roles, of which the most recent is hormonal activity.

View Article and Find Full Text PDF

Rhodococcus fascians is a phytopathogenic Gram-positive Actinomycete with a very broad host range encompassing especially dicotyledonous herbaceous perennials, but also some monocots, such as the Liliaceae and, recently, the woody crop pistachio. The pathogenicity of R. fascians strain D188 is known to be encoded by the linear plasmid pFiD188 and to be dictated by its capacity to produce a mixture of cytokinins.

View Article and Find Full Text PDF

In plants, the generation of new cell types and tissues depends on coordinated and oriented formative cell divisions. The plasma membrane-localized receptor kinase ARABIDOPSIS CRINKLY 4 (ACR4) is part of a mechanism controlling formative cell divisions in the Arabidopsis root. Despite its important role in plant development, very little is known about the molecular mechanism with which ACR4 is affiliated and its network of interactions.

View Article and Find Full Text PDF

An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and thereby allows for the enrichment of specific, though different types of peptides. Here, we focus on the application of diagonal chromatography for the study of modifications of plant proteins.

View Article and Find Full Text PDF

Ubiquitination, the covalent binding of the small protein modifier ubiquitin to a target protein, is an important and frequently studied posttranslational protein modification. Multiple reports provide useful insights into the plant ubiquitinome, but mostly at the protein level without comprehensive site identification. Here, we implemented ubiquitin combined fractional diagonal chromatography (COFRADIC) for proteome-wide ubiquitination site mapping on Arabidopsis thaliana cell cultures.

View Article and Find Full Text PDF

Likely due to conformational rearrangements, small molecule inhibitors may stabilize the active conformation of protein kinases and paradoxically promote tumorigenesis. We combined limited proteolysis with stable isotope labeling MS to monitor protein conformational changes upon binding of small molecules. Applying this method to the human serine/threonine kinase B-Raf, frequently mutated in cancer, we found that binding of ATP or its nonhydrolyzable analogue AMP-PNP, but not ADP, stabilized the structure of both B-Raf(WT) and B-Raf(V600E).

View Article and Find Full Text PDF

Leafy gall syndrome is the consequence of modified plant development in response to a mixture of cytokinins secreted by the biotrophic actinomycete Rhodococcus fascians. The similarity of the induced symptoms with the phenotype of plant mutants defective in strigolactone biosynthesis and signalling prompted an evaluation of the involvement of strigolactones in this pathology. All tested strigolactone-related Arabidopsis thaliana mutants were hypersensitive to R.

View Article and Find Full Text PDF

Proteins are dynamic molecules; they undergo crucial conformational changes induced by post-translational modifications and by binding of cofactors or other molecules. The characterization of these conformational changes and their relation to protein function is a central goal of structural biology. Unfortunately, most conventional methods to obtain structural information do not provide information on protein dynamics.

View Article and Find Full Text PDF

The V600E missense mutation in B-Raf kinase leads to an anomalous regulation of the MAPK pathway, uncontrolled cell proliferation, and initiation of tumorigenesis. While the ATP-competitive B-Raf inhibitors block the MAPK pathway in B-Raf mutant cells, they induce conformational changes to wild-type B-Raf kinase domain leading to heterodimerization with C-Raf causing a paradoxical hyperactivation of MAPK pathway. A new class of inhibitors (paradox breakers) has been developed that inhibit B-Raf(V600E) activity without agonistically affecting the MAPK pathway in wild-type B-Raf cells.

View Article and Find Full Text PDF

Typically, mass spectrometry is used to identify the peptides present in a complex peptide mixture and subsequently the precursor proteins. As such, mass spectrometry focuses mainly on the primary structure, the (modified) amino acid sequence of peptides and proteins. In contrast, the three-dimensional structure of a protein is typically determined with protein X-ray crystallography or NMR.

View Article and Find Full Text PDF

Plant growth and development are regulated by hormones and the associated signalling pathways share several common steps, the first being the detection of the signal by receptor proteins. This typically leads to conformational changes in the receptor, thereby modifying its spectrum of interaction partners. Next, secondary signals are transmitted via rapid post-translational cascades, such as targeted phosphorylation or ubiquitination, resulting in the activation/deactivation, relocalization or degradation of target proteins.

View Article and Find Full Text PDF

Here, we apply the COmbined FRActional DIagonal Chromatography (COFRADIC) technology to enrich for ubiquitinated peptides and to identify sites of ubiquitination by mass spectrometry. Our technology bypasses the need to overexpress tagged variants of ubiquitin and the use of sequence-biased antibodies recognizing ubiquitin remnants. In brief, all protein primary amino groups are blocked by chemical acetylation, after which ubiquitin chains are proteolytically and specifically removed by the catalytic core domain of the USP2 deubiquitinase (USP2cc).

View Article and Find Full Text PDF