Publications by authors named "Elisabeth Ritzel"

Endothelial progenitor cells (EPCs) are involved in vascular repair and modulate properties of smooth muscle cells (SMCs) relevant for their contribution to neointima formation following injury. Considering the relevant role of the CXCL12-CXCR4 axis in vascular homeostasis and the potential of EPCs and SMCs to release CXCL12 and express CXCR4, we analyzed the engagement of the CXCL12-CXCR4 axis in various modes of EPC-SMC interaction relevant for injury- and lipid-induced atherosclerosis. We now demonstrate that the expression and release of CXCL12 is synergistically increased in a CXCR4-dependent mechanism following EPC-SMC interaction during co-cultivation or in response to recombinant CXCL12, thus establishing an amplifying feedback loop Additionally, mechanical injury of SMCs induces increased release of CXCL12, resulting in enhanced CXCR4-dependent recruitment of EPCs to SMCs.

View Article and Find Full Text PDF

Background:  Smooth muscle cells (SMCs) are the main driver of neointima formation and restenosis following vascular injury. In animal models, endothelial progenitor cells (EPCs) accelerate endothelial regeneration and reduce neointima formation after arterial injury; however, EPC-capture stents do not reduce target vessel failure compared with conventional stents. Here we examined the influence of EPCs on features of SMCs pivotal for their impact on injury-induced neointima formation including proliferation, migration, and phenotype switch.

View Article and Find Full Text PDF

Background: Angiogenic early outgrowth cells (EOCs) have been reported to contribute to endothelial regeneration and to limit neointima formation after vascular injury. Vascular pathologies comprise platelet activation and concomitant generation of platelet microparticles (PMPs). We hypothesized that PMPs may interact with EOCs in the context of vascular injury and modulate their regenerative potential.

View Article and Find Full Text PDF