We present data on the evolution of intrinsically disordered regions (IDRs) taking into account the entire human protein kinome. The evolutionary data of the IDRs with respect to the kinase domains (KDs) and kinases as a whole protein (WP) are reported. Further, we have reported its post translational modifications of FAK1 IDRs and their contribution to the cytoskeletal remodeling.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
January 2017
Therapeutic protein kinase inhibitors are designed on the basis of kinase structures. Here, we define intrinsically disordered regions (IDRs) in structurally hybrid kinases. We reveal that 65% of kinases have an IDR adjacent to their kinase domain (KD).
View Article and Find Full Text PDFExpansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain.
View Article and Find Full Text PDFProtein interaction networks play central roles in biological systems, from simple metabolic pathways through complex programs permitting the development of organisms. Multicellularity could only have arisen from a careful orchestration of cellular and molecular roles and responsibilities, all properly controlled and regulated. Disease reflects a breakdown of this organismal homeostasis.
View Article and Find Full Text PDFCellular processes often depend on stable physical associations between proteins. Despite recent progress, knowledge of the composition of human protein complexes remains limited. To close this gap, we applied an integrative global proteomic profiling approach, based on chromatographic separation of cultured human cell extracts into more than one thousand biochemical fractions that were subsequently analyzed by quantitative tandem mass spectrometry, to systematically identify a network of 13,993 high-confidence physical interactions among 3,006 stably associated soluble human proteins.
View Article and Find Full Text PDFBioinformatic methods to predict protein-protein interactions (PPI) via coevolutionary analysis have -positioned themselves to compete alongside established in vitro methods, despite a lack of understanding for the underlying molecular mechanisms of the coevolutionary process. Investigating the alignment of coevolutionary predictions of PPI with experimental data can focus the effective scope of prediction and lead to better accuracies. A new rate-based coevolutionary method, MMM, preferentially finds obligate interacting proteins that form complexes, conforming to results from studies based on coimmunoprecipitation coupled with mass spectrometry.
View Article and Find Full Text PDFOne hundred and seventy-one genes encoding potential esterases from 11 bacterial genomes were cloned and overexpressed in Escherichia coli; 74 of the clones produced soluble proteins. All 74 soluble proteins were purified and screened for esterase activity; 36 proteins showed carboxyl esterase activity on short-chain esters, 17 demonstrated arylesterase activity, while 38 proteins did not exhibit any activity towards the test substrates. Esterases from Rhodopseudomonas palustris (RpEST-1, RpEST-2 and RpEST-3), Pseudomonas putida (PpEST-1, PpEST-2 and PpEST-3), Pseudomonas aeruginosa (PaEST-1) and Streptomyces avermitilis (SavEST-1) were selected for detailed biochemical characterization.
View Article and Find Full Text PDFGroEL is a chaperone thought of as essential for bacterial life. However, some species of Mollicutes are missing GroEL. We use phylogenetic analysis to show that the presence of GroEL is polyphyletic among the Mollicutes, and that there is evidence for lateral gene transfer of GroEL to Mycoplasma penetrans from the Proteobacteria.
View Article and Find Full Text PDFCorrelated mutation analysis (CMA) is an effective approach for predicting functional and structural residue interactions from multiple sequence alignments (MSAs) of proteins. As nearby residues may also play a role in a given functional interaction, we were interested in seeing whether covarying sites were clustered, and whether this could be used to enhance the predictive power of CMA. A large-scale search for coevolving regions within protein domains revealed that if two sites in a MSA covary, then neighboring sites in the alignment also typically covary, resulting in clusters of covarying residues.
View Article and Find Full Text PDFCoevolution maintains interactions between phenotypic traits through the process of reciprocal natural selection. Detecting molecular coevolution can expose functional interactions between molecules in the cell, generating insights into biological processes, pathways, and the networks of interactions important for cellular function. Prediction of interaction partners from different protein families exploits the property that interacting proteins can follow similar patterns and relative rates of evolution.
View Article and Find Full Text PDFRNA sequences can form structures which are conserved throughout evolution and the question of aligning two RNA secondary structures has been extensively studied. Most of the previous alignment algorithms require the input of gap opening and gap extension penalty parameters. The choice of appropriate parameter values is controversial as there is little biological information to guide their assignment.
View Article and Find Full Text PDFMotivation: With hundreds of completely sequenced microbial genomes available, and advancements in DNA microarray technology, the detection of genes in microbial communities consisting of hundreds of thousands of sequences may be possible. The existing strategies developed for DNA probe design, geared toward identifying specific sequences, are not suitable due to the lack of coverage, flexibility and efficiency necessary for applications in metagenomics.
Methods: ProDesign is a tool developed for the selection of oligonucleotide probes to detect members of gene families present in environmental samples.
BMC Bioinformatics
October 2006
Background: There have been many algorithms and software programs implemented for the inference of multiple sequence alignments of protein and DNA sequences. The "true" alignment is usually unknown due to the incomplete knowledge of the evolutionary history of the sequences, making it difficult to gauge the relative accuracy of the programs.
Results: We tested nine of the most often used protein alignment programs and compared their results using sequences generated with the simulation software Simprot which creates known alignments under realistic and controlled evolutionary scenarios.
Approaches for the determination of interacting partners from different protein families (such as ligands and their receptors) have made use of the property that interacting proteins follow similar patterns and relative rates of evolution. Interacting protein partners can then be predicted from the similarity of their phylogenetic trees or evolutionary distances matrices. We present a novel method called Codep, for the determination of interacting protein partners by maximizing co-evolutionary signals.
View Article and Find Full Text PDFIn comparative genomic studies, syntenic groups of homologous sequence in the same order have been used as supplementary information that can be used in helping to determine the orthology of the compared sequences. The assumption is that orthologous gene copies are more likely to share the same genome positions and share the same gene neighbors. In this study we have defined positional homologs as those that also have homologous neighboring genes and we investigated the usefulness of this distinction for bacterial comparative genomics.
View Article and Find Full Text PDFBackground: General protein evolution models help determine the baseline expectations for the evolution of sequences, and they have been extensively useful in sequence analysis and for the computer simulation of artificial sequence data sets.
Results: We have developed a new method of simulating protein sequence evolution, including insertion and deletion (indel) events in addition to amino-acid substitutions. The simulation generates both the simulated sequence family and a true sequence alignment that captures the evolutionary relationships between amino acids from different sequences.
Substitution matrices have been useful for sequence alignment and protein sequence comparisons. The BLOSUM series of matrices, which had been derived from a database of alignments of protein blocks, improved the accuracy of alignments previously obtained from the PAM-type matrices estimated from only closely related sequences. Although BLOSUM matrices are scoring matrices now widely used for protein sequence alignments, they do not describe an evolutionary model.
View Article and Find Full Text PDFEmpirical models of substitution are often used in protein sequence analysis because the large alphabet of amino acids requires that many parameters be estimated in all but the simplest parametric models. When information about structure is used in the analysis of substitutions in structured RNA, a similar situation occurs. The number of parameters necessary to adequately describe the substitution process increases in order to model the substitution of paired bases.
View Article and Find Full Text PDFMotivation: Multiple sequence alignments of homologous proteins are useful for inferring their phylogenetic history and to reveal functionally important regions in the proteins. Functional constraints may lead to co-variation of two or more amino acids in the sequence, such that a substitution at one site is accompanied by compensatory substitutions at another site. It is not sufficient to find the statistical correlations between sites in the alignment because these may be the result of several undetermined causes.
View Article and Find Full Text PDF