Int J Environ Res Public Health
January 2017
This paper reviews information from the existing literature and the EU GMOS (Global Mercury Observation System) project to assess the current scientific knowledge on global mercury releases into the atmosphere, on global atmospheric transport and deposition, and on the linkage between environmental contamination and potential impacts on human health. The review concludes that assessment of global sources and pathways of mercury in the context of human health is important for being able to monitor the effects from implementation of the Minamata Convention targets, although new research is needed on the improvement of emission inventory data, the chemical and physical behaviour of mercury in the atmosphere, the improvement of monitoring network data, predictions of future emissions and speciation, and on the subsequent effects on the environment, human health, as well as the economic costs and benefits of reducing these aspects.
View Article and Find Full Text PDFInt J Environ Res Public Health
March 2015
This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future.
View Article and Find Full Text PDFSeveral measures are available for reducing mercury emissions; however, these measures differ with regard to emission control efficiency, cost, and environmental benefits obtained through their implementation. Measures that include the application of technology, such as technology to remove mercury from flue gases in electric power plants, waste incinerators, and smelters, are rather expensive compared with nontechnological measures. In general, dedicated mercury removal is considerably more expensive than a co-benefit strategy, using air pollution control equipment originally designed to limit emissions of criterion pollutants, such as particulate matter, sulfur dioxide, or oxides of nitrogen.
View Article and Find Full Text PDFThe paper reviews the current state of knowledge regarding European emissions of mercury and presents estimates of European emissions of mercury to the atmosphere from anthropogenic sources for the year 2000. This information was then used as a basis for Hg emission scenario development until the year 2020. Combustion of coal in power plants and residential heat furnaces generates about half of the European emissions being 239 tonnes.
View Article and Find Full Text PDFOver decades, large amounts of the neurotoxin lead were released into the European environment, mostly from gasoline lead additives. Emissions were growing unabatedly until the 1970s, when a series of regulations on the allowed gasoline lead content were adopted. As a result, in the 1990s most gasoline contained only small amounts of lead.
View Article and Find Full Text PDF