Publications by authors named "Elisabeth Nyakatura"

Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.

View Article and Find Full Text PDF

Purpose: Immune cells are capable of eliminating leukemic cells, as evidenced by outcomes in hematopoietic cell transplantation (HCT). However, patients who fail induction therapy will not benefit from HCT due to their minimal residual disease (MRD) status. Thus, we aimed to develop an immunomodulatory agent to reduce MRD by activating immune effector cells in the presence of leukaemia cells via a novel fusion protein that chimerises two clinically tolerated biologics: a CD33 antibody and the IL15Ra/IL15 complex (CD33xIL15).

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation.

View Article and Find Full Text PDF

Human monoclonal antibodies (mAbs) that target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein have been isolated from convalescent individuals and developed into therapeutics for SARS-CoV-2 infection. However, therapeutic mAbs for SARS-CoV-2 have been rendered obsolete by the emergence of mAb-resistant virus variants. Here we report the generation of a set of six human mAbs that bind the human angiotensin-converting enzyme-2 (hACE2) receptor, rather than the SARS-CoV-2 spike protein.

View Article and Find Full Text PDF

Phosphopeptides derived from dysregulated protein phosphorylation in cancer cells can be processed and presented by MHC class I and class II molecules and, therefore, represent an untapped class of tumor-specific antigens that could be used as widely expressed "public" cancer neoantigens (NeoAgs). We generated a TCR mimic (TCRm) mAb, 6B1, specific for a phosphopeptide derived from insulin receptor substrate 2 (pIRS2) presented by HLA-A*02:01. The pIRS2 epitope's presentation by HLA-A*02:01 was confirmed by mass spectrometry.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a flavivirus that can cause severe disease, but there are no approved treatments or vaccines. A complication for flavivirus vaccine development is the potential of immunogens to enhance infection via antibody-dependent enhancement (ADE), a process mediated by poorly neutralizing and cross-reactive antibodies. Thus, there is a great need to develop immunogens that minimize the potential to elicit enhancing antibodies.

View Article and Find Full Text PDF

Multiple agents in the family (filoviruses) are associated with sporadic human outbreaks of highly lethal disease, while others, including several recently identified agents, possess strong zoonotic potential. Although viral glycoprotein (GP)-specific monoclonal antibodies have demonstrated therapeutic utility against filovirus disease, currently FDA-approved molecules lack antiviral breadth. The development of broadly neutralizing antibodies has been challenged by the high sequence divergence among filovirus GPs and the complex GP proteolytic cleavage cascade that accompanies filovirus entry.

View Article and Find Full Text PDF

With the emergence of novel viruses, the development of new antivirals is more urgent than ever. A key step in human immunodeficiency virus type 1 (HIV-1) infection is six-helix bundle formation within the envelope protein subunit gp41. Selective disruption of bundle formation by peptides has been shown to be effective; however, these drugs, exemplified by T20, are prone to rapid clearance from the patient.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus (CCHFV) is a World Health Organization priority pathogen. CCHFV infections cause a highly lethal hemorrhagic fever for which specific treatments and vaccines are urgently needed. Here, we characterize the human immune response to natural CCHFV infection to identify potent neutralizing monoclonal antibodies (nAbs) targeting the viral glycoprotein.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes persistent arthritis in a subset of human patients. We report the isolation and functional characterization of monoclonal antibodies (mAbs) from two patients infected with CHIKV in the Dominican Republic. Single B cell sorting yielded a panel of 46 human mAbs of diverse germline lineages that targeted epitopes within the E1 or E2 glycoproteins.

View Article and Find Full Text PDF

The zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS). No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1) as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV).

View Article and Find Full Text PDF

Filoviruses (family Filoviridae) include five ebolaviruses and Marburg virus. These pathogens cause a rapidly progressing and severe viral disease with high mortality rates (generally 30-90%). Outbreaks of filovirus disease are sporadic and, until recently, were limited to less than 500 cases.

View Article and Find Full Text PDF

The Sudan virus (SUDV), an ebolavirus, causes severe hemorrhagic fever with human case fatality rates of ∼50%. Previous work from our lab demonstrated the synthetic antibody F4 potently inhibits viral entry and protects against lethal virus challenge in mice [Chen et al., ACS Chem.

View Article and Find Full Text PDF

Experimental monoclonal antibody (mAb) therapies have shown promise for treatment of lethal Ebola virus (EBOV) infections, but their species-specific recognition of the viral glycoprotein (GP) has limited their use against other divergent ebolaviruses associated with human disease. Here, we mined the human immune response to natural EBOV infection and identified mAbs with exceptionally potent pan-ebolavirus neutralizing activity and protective efficacy against three virulent ebolaviruses. These mAbs recognize an inter-protomer epitope in the GP fusion loop, a critical and conserved element of the viral membrane fusion machinery, and neutralize viral entry by targeting a proteolytically primed, fusion-competent GP intermediate (GP) generated in host cell endosomes.

View Article and Find Full Text PDF

Bispecific antibody engineering, in which binding specificities toward 2 distinct epitopes are combined into a single molecule, can greatly enhance immunotherapeutic properties of monoclonal antibodies. While the bispecific antibody approach has been applied widely to targets for indications such as cancer and inflammation, the development of such agents for viral immunotherapy is only now emerging. Here, we review recent advances in the development of bispecific antibodies for viral immunotherapy, highlighting promising in vitro and in vivo results.

View Article and Find Full Text PDF

There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 or the GP receptor-binding site are coupled to a mAb against a conserved, surface-exposed GP epitope.

View Article and Find Full Text PDF

Previous efforts to identify cross-neutralizing antibodies to the receptor-binding site (RBS) of ebolavirus glycoproteins have been unsuccessful, largely because the RBS is occluded on the viral surface. We report a monoclonal antibody (FVM04) that targets a uniquely exposed epitope within the RBS; cross-neutralizes Ebola (EBOV), Sudan (SUDV), and, to a lesser extent, Bundibugyo viruses; and shows protection against EBOV and SUDV in mice and guinea pigs. The antibody cocktail ZMapp™ is remarkably effective against EBOV (Zaire) but does not cross-neutralize other ebolaviruses.

View Article and Find Full Text PDF

Filoviruses (Ebola and Marburg) cause severe hemorrhagic fever. There are five species of ebolavirus; among these, the Ebola (Zaire) and Sudan viruses (EBOV and SUDV, respectively) are highly pathogenic and have both caused recurring, large outbreaks. However, the EBOV and SUDV glycoprotein (GP) sequences are 45% divergent and thus antigenically distinct.

View Article and Find Full Text PDF

Unlabelled: The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes.

View Article and Find Full Text PDF

The Ebolaviruses are members of the family Filoviridae ("filoviruses") and cause severe hemhorragic fever with human case fatality rates as high as 90%. Infection requires attachment of the viral particle to cells and triggering of membrane fusion between the host and viral membranes, a process that occurs in the host endosome and is facilitated by the envelope glycoprotein (GP). One potential strategy for therapeutic intervention is the development of agents (antibodies, peptides, and small molecules) that can interfere with viral entry aspects such as attachment, uptake, priming, or membrane fusion.

View Article and Find Full Text PDF

Involved in numerous key biological functions, protein helix-helix interactions follow a well-defined intermolecular recognition pattern. The characteristic structure of the α-helical coiled-coil allows for the specific randomization of clearly defined interaction partners within heteromeric systems. In this work, a rationally designed heterodimeric coiled-coil was used to investigate potential factors influencing the sequence selectivity in interhelical interactions.

View Article and Find Full Text PDF

Since peptides are vital for cellular and pathogenic processes, much effort has been put into the design of unnatural oligomers that mimic natural peptide structures, also referred to as foldamers. However, to enable the specific application of foldamers, a thorough characterization of their interaction profiles in native protein environments is required. We report here the application of phage display for the identification of suitable helical environments for a sequence comprising an alternating set of β- and γ-amino acids.

View Article and Find Full Text PDF
Article Synopsis
  • The use of homologated amino acids in peptides generally reduces their thermal stability, but a study identified a specific interaction between an α-helical peptide and an αβγ-chimera that maintains stability.
  • Selected peptides exhibited thermal stabilities similar to those made from only α-amino acids, thanks to specific bonding interactions explained through molecular dynamics simulations and mutational analysis.
  • These findings offer valuable insights for designing biologically relevant peptides that incorporate β- and γ-amino acids.
View Article and Find Full Text PDF

A practical route for the stereoselective synthesis of (2S,3S)-5,5,5-trifluoroisoleucine (L-5-F3Ile) and (2R,3S)-5,5,5-trifluoro-allo-isoleucine (D-5-F3-allo-Ile) was developed. The hydrophobicity of L-5-F3Ile was examined and it was incorporated into a model peptide via solid phase peptide synthesis to determine its α-helix propensity. The α-helix propensity of 5-F3Ile is significantly lower than Ile, but surprisingly high when compared with 4'-F3Ile.

View Article and Find Full Text PDF