Publications by authors named "Elisabeth Moussaud-Lamodiere"

Article Synopsis
  • The ovarian cortical reserve of follicles is really important for having babies, but some medical treatments can harm them, leading to fertility issues.
  • Researchers studied 120 follicles from kids and adults and found two main types of follicles in both age groups, which helps understand their roles better.
  • They discovered that while growth patterns are similar, there are some differences in the cells and genes, and they found new marker genes that could improve how we preserve fertility at different ages.
View Article and Find Full Text PDF

Study Question: What is the effect of the chemical activation (cIVA) protocol compared with fragmentation only (Frag, also known as mechanical IVA) on gene expression, follicle activation and growth in human ovarian tissue ?

Summary Answer: Although histological assessment shows that cIVA significantly increases follicle survival and growth compared to Frag, both protocols stimulate extensive and nearly identical transcriptomic changes in cultured tissue compared to freshly collected ovarian tissue, including marked changes in energy metabolism and inflammatory responses.

What Is Known Already: Treatments based on cIVA of the phosphatase and tensin homolog (PTEN)-phosphatidylinositol 3-kinase (PI3K) pathway in ovarian tissue followed by auto-transplantation have been administered to patients with refractory premature ovarian insufficiency (POI) and resulted in live births. However, comparable effects with mere tissue fragmentation have been shown, questioning the added value of chemical stimulation that could potentially activate oncogenic responses.

View Article and Find Full Text PDF

Phthalates are found in everyday items like plastics and personal care products. There is an increasing concern that continuous exposure can adversely affect female fertility. However, experimental data are lacking to establish causal links between exposure and disease in humans.

View Article and Find Full Text PDF

Background Aims: Age-related macular degeneration (AMD) is the most common cause of blindness in elderly patients within developed countries, affecting more than 190 million worldwide. In AMD, the retinal pigment epithelial (RPE) cell layer progressively degenerates, resulting in subsequent loss of photoreceptors and ultimately vision. There is currently no cure for AMD, but therapeutic strategies targeting the complement system are being developed to slow the progression of the disease.

View Article and Find Full Text PDF

Most patients with advanced ovarian cancer (OC) relapse and progress despite systemic therapy, pointing to the need for improved and tailored therapy options. Functional precision medicine can help to identify effective therapies for individual patients in a clinically relevant timeframe. Here, we present a scalable functional precision medicine platform: DET3Ct (Drug Efficacy Testing in 3D Cultures), where the response of patient cells to drugs and drug combinations are quantified with live-cell imaging.

View Article and Find Full Text PDF

Here, we present a methodology based on multiplexed fluorescence screening of two- or three-dimensional cell cultures in a newly designed multichambered microwell chip, allowing direct assessment of drug or immune cell cytotoxic efficacy. We establish a framework for cell culture, formation of tumor spheroids, fluorescence labeling, and imaging of fixed or live cells at various magnifications directly in the chip together with data analysis and interpretation. The methodology is demonstrated by drug cytotoxicity screening using ovarian and non-small cell lung cancer cells and by cellular cytotoxicity screening targeting tumor spheroids of renal carcinoma and ovarian carcinoma with natural killer cells from healthy donors.

View Article and Find Full Text PDF

Objective: To assess the role of CHCHD2 variants in patients with Parkinson disease (PD) and Lewy body disease (LBD) in Caucasian populations.

Methods: All exons of the CHCHD2 gene were sequenced in a US Caucasian patient-control series (878 PD, 610 LBD, and 717 controls). Subsequently, exons 1 and 2 were sequenced in an Irish series (355 PD and 365 controls) and a Polish series (394 PD and 350 controls).

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in the PINK1 and PARKIN genes lead to recessive, early-onset Parkinson's disease by disrupting the process that removes damaged mitochondria.
  • PINK1 activates Parkin and modifies ubiquitin (Ub), specifically phosphorylating Ub at the S65 site, which is important for the mitophagic response, though its exact physiological role is not yet fully understood.
  • New research shows that phosphorylated Ub (pS65-Ub) levels increase during mitochondrial stress, accumulate with age and disease in the brain, and its understanding could have implications for developing biomarkers and therapies for Parkinson's disease.
View Article and Find Full Text PDF

Mutations in the PARKIN/PARK2 gene that result in loss-of-function of the encoded, neuroprotective E3 ubiquitin ligase Parkin cause recessive, familial early-onset Parkinson disease. As an increasing number of rare Parkin sequence variants with unclear pathogenicity are identified, structure-function analyses will be critical to determine their disease relevance. Depending on the specific amino acids affected, several distinct pathomechanisms can result in loss of Parkin function.

View Article and Find Full Text PDF

Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of damaged mitochondria to facilitate their clearance from the cell.

View Article and Find Full Text PDF

The accumulation of α-synuclein aggregates is the hallmark of Parkinson's disease, and more generally of synucleinopathies. The accumulation of tau aggregates however is classically found in the brains of patients with dementia, and this type of neuropathological feature specifically defines the tauopathies. Nevertheless, in numerous cases α-synuclein positive inclusions are also described in tauopathies and vice versa, suggesting a co-existence or crosstalk of these proteinopathies.

View Article and Find Full Text PDF

Background: Recessive mutations in the PTEN-induced putative kinase 1 (PINK1) gene cause early-onset Parkinson's disease (EOPD). The clinical phenotype of families that have this PINK1-associated disease may present with different symptoms, including typical PD. The loss of the PINK1 protein may lead to mitochondrial dysfunction, which causes dopaminergic neuron death.

View Article and Find Full Text PDF

Loss-of-function mutations in the genes encoding PINK1 and Parkin (also known as PARK2) are the most common causes of recessive Parkinson's disease. Both together mediate the selective degradation of mitochondrial proteins and whole organelles via the proteasome and the autophagy-lysosome pathway (mitophagy). The mitochondrial kinase PINK1 activates and recruits the E3 ubiquitin ligase Parkin to de-energized mitochondria.

View Article and Find Full Text PDF