Publications by authors named "Elisabeth Malle"

Resisting and tolerating microbes are alternative strategies to survive infection, but little is known about the evolutionary mechanisms controlling this balance. Here genomic analyses of anatomically modern humans, extinct Denisovan hominins and mice revealed a TNFAIP3 allelic series with alterations in the encoded immune response inhibitor A20. Each TNFAIP3 allele encoded substitutions at non-catalytic residues of the ubiquitin protease OTU domain that diminished IκB kinase-dependent phosphorylation and activation of A20.

View Article and Find Full Text PDF

Tens of millions suffer from insulin deficiency (ID); a defect leading to severe metabolic imbalance and death. The only means for management of ID is insulin therapy; yet, this approach is sub-optimal and causes life-threatening hypoglycemia. Hence, ID represents a great medical and societal challenge.

View Article and Find Full Text PDF

Aims/hypothesis: Administration of anti-CD40 ligand (CD40L) antibodies has been reported to allow long-term islet allograft survival in non-human primates without the need for exogenous immunosuppression. However, the use of anti-CD40L antibodies was associated with thromboembolic complications. Targeting downstream intracellular components shared between CD40 and other TNF family co-stimulatory molecules could bypass these complications.

View Article and Find Full Text PDF

The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB-inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo.

View Article and Find Full Text PDF

In this study, a critical and novel role for TNF receptor (TNFR) associated factor 2 (TRAF2) is elucidated for peripheral CD8(+) T-cell and NKT-cell homeostasis. Mice deficient in TRAF2 only in their T cells (TRAF2TKO) show ∼40% reduction in effector memory and ∼50% reduction in naïve CD8(+) T-cell subsets. IL-15-dependent populations were reduced further, as TRAF2TKO mice displayed a marked ∼70% reduction in central memory CD8(+) CD44(hi) CD122(+) T cells and ∼80% decrease in NKT cells.

View Article and Find Full Text PDF

Islet grafts can contribute to their own destruction via the elaboration of proinflammatory genes, many of which are transcriptionally regulated by nuclear factor κ-light-chain-enhancer of activated B-cells (NF-κB). Thus, NF-κB constitutes an enticing gene therapy candidate to improve the success of islet transplantation. To test this hypothesis in vivo, we blocked NF-κB in BALB/c (H2(d)) to C57/BL6 (H2(b)) mouse islet allografts by genetically engineering islets to express the NF-κB superrepressor, IκBα.

View Article and Find Full Text PDF

The peptide transporter (PTR) family represents a group of proton-coupled secondary transporters responsible for bulk uptake of amino acids in the form of di- and tripeptides, an essential process employed across species ranging from bacteria to humans. To identify amino acids critical for peptide transport in a prokaryotic PTR member, we have screened a library of mutants of the Escherichia coli peptide transporter YdgR using a high-throughput substrate uptake assay. We have identified 35 single point mutations that result in a full or partial loss of transport activity.

View Article and Find Full Text PDF

The serotonin transporter (SERT) is a member of the SLC6 family of solute carriers. SERT plays a crucial role in synaptic neurotransmission by retrieving released serotonin. The intracellular carboxyl terminus of various neurotransmitter transporters has been shown to be important for the correct delivery of SLC6 family members to the cell surface.

View Article and Find Full Text PDF

We present the clinical and laboratory features of a boy with a new syndrome of mitochondrial depletion syndrome and T cell immunodeficiency. The child suffered from severe recurrent infectious diseases, anemia, and thrombocytopenia. Clinically, he presented with severe psychomotor retardation, axial hypotonia, and a disturbed pain perception leading to debilitating biting of the thumb, lower lip, and tongue.

View Article and Find Full Text PDF