Purpose: Genetic counselors (GCs) increasingly play key roles in advancing genomic medicine through innovative research. Here, we examine one large cohort of GCs' evolving contributions to the literature, with the goal of facilitating worldwide professional development for GCs through scholarly activities.
Methods: Publications were cataloged by members of the Section of Genetic Counseling (Section), established at the Children's Hospital of Philadelphia and the University of Pennsylvania in 2014, including publication year, journal, impact factor, and author position.
Objective: There are limited studies exploring the support and education needs of individuals at-risk for or diagnosed with hereditary frontotemporal degeneration (FTD) and/or amyotrophic lateral sclerosis (ALS). This study evaluated a novel conference for this population to assess conference efficacy, probe how participants assessed relevant resources, and identify outstanding needs of persons at-risk/diagnosed.
Methods: We implemented a post-conference electronic survey that probed participants' satisfaction, prior experience with resources, and unmet needs.
Introduction: The safety of predicting conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD) dementia using apolipoprotein E () genotyping is unknown.
Methods: We randomized 114 individuals with MCI to receive estimates of 3-year risk of conversion to AD dementia informed by genotyping (disclosure arm) or not (non-disclosure arm) in a non-inferiority clinical trial. Primary outcomes were anxiety and depression scores.
Introduction: As the number of Alzheimer's disease (AD) prevention studies grows, many individuals will need to learn their genetic and/or biomarker risk for the disease to determine trial eligibility. An alternative to traditional models of genetic counseling and disclosure is needed to provide comprehensive standardized counseling and disclosure of apolipoprotein E () results efficiently, safely, and effectively in the context of AD prevention trials.
Methods: A multidisciplinary Genetic Testing, Counseling, and Disclosure Committee was established and charged with operationalizing the Alzheimer's Prevention Initiative (API) Genetic Counseling and Disclosure Process for use in the API Generation Program trials.
Introduction: Recruitment for Alzheimer's disease (AD) prevention research studies is challenging because of lack of awareness among cognitively healthy adults coupled with the high screen fail rate due to participants not having a genetic risk factor or biomarker evidence of the disease. Participant recruitment registries offer one solution for efficiently and effectively identifying, characterizing, and connecting potential eligible volunteers to studies.
Methods: Individuals aged 55-75 years who live in the United States and self-report not having a diagnosis of cognitive impairment such as MCI or dementia are eligible to join GeneMatch.
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) presents with a variety of clinical phenotypes including motor impairments such as gait dysfunction, rigidity, tremor and bradykinesia as well as cognitive deficits including personality changes and dementia. In recent years, colony stimulating factor 1 receptor gene (CSF1R) has been identified as the primary genetic cause of HDLS. We describe the clinical and neuropathological features in three siblings with HDLS and the CSF1R p.
View Article and Find Full Text PDFWe investigated whether chromosome 9 open reading frame 72 hexanucleotide repeat expansion (C9orf72 expansion) size in peripheral DNA was associated with clinical differences in frontotemporal degeneration (FTD) and amyotrophic lateral sclerosis (ALS) linked to C9orf72 repeat expansion mutations. A novel quantification workflow was developed to measure C9orf72 expansion size by Southern blot densitometry in a cross-sectional cohort of C9orf72 expansion carriers with FTD (n = 39), ALS (n = 33), both (n = 35), or who are unaffected (n = 21). Multivariate linear regressions were performed to assess whether C9orf72 expansion size from peripheral DNA was associated with clinical phenotype, age of disease onset, disease duration and age at death.
View Article and Find Full Text PDFObjective: To use in vivo neuroimaging and postmortem neuropathologic analysis in C9orf72 repeat expansion patients to investigate the hypothesis that C9orf72 promoter hypermethylation is neuroprotective and regionally selective.
Methods: Twenty patients with a C9orf72 repeat expansion participating in a high-resolution MRI scan and a clinical examination and a subset of patients (n = 11) were followed longitudinally with these measures. Gray matter (GM) density was related to C9orf72 promoter hypermethylation using permutation-based testing.
C9orf72 promoter hypermethylation inhibits the accumulation of pathologies which have been postulated to be neurotoxic. We tested here whether C9orf72 hypermethylation is associated with prolonged disease in C9orf72 mutation carriers. C9orf72 methylation was quantified from brain or blood using methylation-sensitive restriction enzyme digest-qPCR in a cross-sectional cohort of 118 C9orf72 repeat expansion carriers and 19 non-carrier family members.
View Article and Find Full Text PDFObjective: Autopsy studies show widespread pathology in amyotrophic lateral sclerosis (ALS), but clinical surveys of multisystem disease in ALS are rare. We investigated ALS-Plus syndrome, an understudied group of patients with clinical features extending beyond pyramidal and neuromuscular systems with or without cognitive/behavioral deficits.
Methods: In a large, consecutively-ascertained cohort of 550 patients with ALS, we documented atypical clinical manifestations.
Objective: To determine the prognostic utility of tauopathy-associated single nucleotide polymorphisms (SNPs) in sporadic behavioral-variant frontotemporal dementia (bvFTD).
Methods: Eighty-one patients with sporadic bvFTD were genotyped for tauopathy-associated SNPs at rs8070723 (microtubule-associated protein tau [MAPT]) and rs1768208 (myelin-associated oligodendrocyte basic protein [MOBP]). We performed a retrospective case-control study comparing age at onset and disease duration between carriers of ≥1 polymorphism allele and noncarriers for these SNPs.
Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) that are sensitive for tau or TDP-43 pathology in frontotemporal lobar degeneration (FTLD). Neuroimaging analyses have revealed distinct distributions of disease in FTLD patients with genetic mutations. However, genetic influences on neuroanatomic structure in sporadic FTLD have not been assessed.
View Article and Find Full Text PDFImportance: A significant portion of frontotemporal lobar degeneration (FTLD) is due to inherited gene mutations, and we are unaware of a large sequential series that includes a recently discovered inherited cause of FTLD. There is also great need to develop clinical tools and approaches that will assist clinicians in the identification and counseling of patients with FTLD and their families regarding the likelihood of an identifiable genetic cause.
Objectives: To ascertain the frequency of inherited FTLD and develop validated pedigree classification criteria for FTLD that provide a standardized means to evaluate pedigree information and insight into the likelihood of mutation-positive genetic test results for C9orf72, MAPT, and GRN.
Objective: To identify potential genetic modifiers contributing to the phenotypic variability that is detected in patients with repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), we investigated the frequency of these expansions in a cohort of 334 subjects previously found to carry mutations in genes known to be associated with a spectrum of neurodegenerative diseases.
Methods: A 2-step protocol, with a fluorescent PCR and a repeat-primed PCR, was used to determine the presence of hexanucleotide expansions in C9ORF72. For one double mutant, we performed Southern blots to assess expansion sizes, and immunohistochemistry to characterize neuropathology.
Neurodegenerative diseases (NDs) are defined by the accumulation of abnormal protein deposits in the central nervous system (CNS), and only neuropathological examination enables a definitive diagnosis. Brain banks and their associated scientific programs have shaped the actual knowledge of NDs, identifying and characterizing the CNS deposits that define new diseases, formulating staging schemes, and establishing correlations between neuropathological changes and clinical features. However, brain banks have evolved to accommodate the banking of biofluids as well as DNA and RNA samples.
View Article and Find Full Text PDFObjective: To see whether the distribution patterns of phosphorylated 43kDa TAR DNA-binding protein (pTDP-43) intraneuronal inclusions in amyotrophic lateral sclerosis (ALS) permit recognition of neuropathological stages.
Methods: pTDP-43 immunohistochemistry was performed on 70 μm sections from ALS autopsy cases (N = 76) classified by clinical phenotype and genetic background.
Results: ALS cases with the lowest burden of pTDP-43 pathology were characterized by lesions in the agranular motor cortex, brainstem motor nuclei of cranial nerves V, VII, and X-XII, and spinal cord α-motoneurons (stage 1).
Background: Significant heterogeneity in clinical features of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) cases with the pathogenic C9orf72 expansion (C9P) have been described. To clarify this issue, we compared a large C9P cohort with carefully matched non-expansion (C9N) cases with a known or highly-suspected underlying TAR DNA-binding protein 43 (TDP-43) proteinopathy.
Methods: A retrospective case-control study was carried out using available cross-sectional and longitudinal clinical and neuropsychological data, MRI voxel-based morphometry (VBM) and neuropathological assessment from 64 C9P cases (ALS=31, FTLD=33) and 79 C9N cases (ALS=36, FTLD=43).
Purpose: Gaucher disease carrier screening is controversial in the medical community. The goal of this study was to explore current Gaucher disease carrier screening practices of prenatal healthcare providers.
Methods: Prenatal healthcare providers were invited by email to complete an electronic-based survey.
Objective: To assess the relative frequency of unique mutations and their associated characteristics in 97 individuals with mutations in progranulin (GRN), an important cause of frontotemporal lobar degeneration (FTLD).
Participants And Design: A 46-site International Frontotemporal Lobar Degeneration Collaboration was formed to collect cases of FTLD with TAR DNA-binding protein of 43-kDa (TDP-43)-positive inclusions (FTLD-TDP). We identified 97 individuals with FTLD-TDP with pathogenic GRN mutations (GRN+ FTLD-TDP), assessed their genetic and clinical characteristics, and compared them with 453 patients with FTLD-TDP in which GRN mutations were excluded (GRN- FTLD-TDP).
The most common genetic contributor to late-onset Parkinson disease (PD) is the LRRK2 gene. In order to effectively integrate LRRK2 genetic testing into clinical practice, a strategy tailored to the PD population must be developed. We assessed 168 individuals with PD for baseline knowledge of genetics, perceived risk, and interest and opinions regarding genetic counseling and testing.
View Article and Find Full Text PDFBackground: Mutation in the progranulin gene (GRN) can cause frontotemporal dementia (FTD). However, it is unclear whether some rare FTD-related GRN variants are pathogenic and whether neurodegenerative disorders other than FTD can also be caused by GRN mutations.
Objectives: To delineate the range of clinical presentations associated with GRN mutations and to define pathogenic candidacy of rare GRN variants.
Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is characterized by progressive decline in behavior, executive function, and language. Progranulin (GRN) gene mutations are pathogenic for FTLD-TDP, and GRN transcript haploinsufficiency is the proposed disease mechanism. However, the evidence for this hypothesis comes mainly from blood-derived cells; we measured progranulin expression in brain.
View Article and Find Full Text PDFTAR DNA-binding protein-43 (TDP-43) is a highly conserved, ubiquitously expressed nuclear protein that was recently identified as the disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Pathogenic TDP-43 gene (TARDBP) mutations have been identified in familial ALS kindreds, and here we report a TARDBP variant (A90V) in a FTLD/ALS patient with a family history of dementia. Significantly, A90V is located between the bipartite nuclear localization signal sequence of TDP-43 and the in vitro expression of TDP-43-A90V led to its sequestration with endogenous TDP-43 as insoluble cytoplasmic aggregates.
View Article and Find Full Text PDF