Maintaining tightly copper homeostasis is crucial for the survival of all living organisms, in particular microorganisms like bacteria. They have evolved a number of proteins to capture, transport and deliver Cu(I), while avoiding Fenton-like reactions. Some Cu proteins exhibit methionine-rich (Met-rich) domains, whose role remains elusive.
View Article and Find Full Text PDFCopper homeostasis mechanisms are critical for bacterial resistance to copper-induced stress. The multicopper oxidase copper efflux oxidase (CueO) is part of the copper detoxification system in aerobic conditions. CueO contains a methionine-rich (Met-rich) domain believed to interact with copper, but its exact function and the importance of related copper-binding sites remain unclear.
View Article and Find Full Text PDFis a microaerophilic hydrogen- and sulfur -oxidizing bacterium that assimilates CO via the reverse tricarboxylic acid cycle (rTCA). Key enzymes of this pathway are pyruvate:ferredoxin oxidoreductase (PFOR) and 2-oxoglutarate:ferredoxin oxidoreductase (OGOR), which are responsible, respectively, for the reductive carboxylation of acetyl-CoA to pyruvate and of succinyl-CoA to 2-oxoglutarate, two energetically unfavorable reactions that require a strong reduction potential. We have confirmed, by biochemistry and proteomics, that possesses a pentameric version of these enzyme complexes ((αβγδε)) and that they are highly abundant in the cell.
View Article and Find Full Text PDFThe hydrogen-based economy will require not only sustainable hydrogen production but also sensitive and cheap hydrogen sensors. Commercially available H sensors are limited by either use of noble metals or elevated temperatures. In nature, hydrogenase enzymes present high affinity and selectivity for hydrogen, while being able to operate in mild conditions.
View Article and Find Full Text PDFUnderstanding how environmental factors affect the bioelectrode efficiency and stability is of uttermost importance to develop high-performance bioelectrochemical devices. By coupling fluorescence confocal microscopy to electrochemistry, this work focuses on the influence of the ionic strength on electro-enzymatic catalysis. In this context, the 4 e/4 H reduction of O into water by the bilirubin oxidase from (BOD) is considered as a model.
View Article and Find Full Text PDFThe importance of copper resistance pathways in pathogenic bacteria is now well recognized, since macrophages use copper to fight bacterial infections. Additionally, considering the increase of antibiotic resistance, growing attention is given to the antimicrobial properties of copper. It is of primary importance to understand how bacteria deal with copper.
View Article and Find Full Text PDFThermus thermophilus laccase belongs to the sub-class of multicopper oxidases that is activated by the extra binding of copper to a methionine-rich domain allowing an electron pathway from the substrate to the conventional first electron acceptor, the T1 Cu. In this work, two key amino acid residues in the 1st and 2nd coordination spheres of T1 Cu are mutated in view of tuning their redox potential and investigating their influence on copper-related activity. Evolution of the kinetic parameters after copper addition highlights that both mutations play a key role influencing the enzymatic activity in distinct unexpected ways.
View Article and Find Full Text PDFDe Novo metalloprotein design assesses the relationship between metal active site architecture and catalytic reactivity. Herein, we use an α-helical scaffold to control the iron coordination geometry when a heme cofactor is allowed to bind to either histidine or cysteine ligands, within a single artificial protein. Consequently, we uncovered a reversible pH-induced switch of the heme axial ligation within this simplified scaffold.
View Article and Find Full Text PDFSurface immobilized enzymes play a key role in numerous biotechnological applications such as biosensors, biofuel cells, or biocatalytic synthesis. As a consequence, the impact of adsorption on the enzyme structure, dynamics, and function needs to be understood on the molecular level as it is critical for the improvement of these technologies. With this perspective in mind, we used a theoretical approach for investigating local protein flexibility on the residue scale that couples a simplified protein representation with an elastic network and Brownian dynamics simulations.
View Article and Find Full Text PDFRedox enzymes can be envisioned as biocatalysts in various electrocatalytic-based devices. Among factors that play roles in bioelectrochemistry limitations, the effect of enzyme-enzyme neighboring interaction on electrocatalysis has rarely been investigated, although critical . We report in this work an in-depth study of gold nanoparticles prepared by laser ablation in the ultimate goal of determining the relationship between activity and enzyme density on electrodes.
View Article and Find Full Text PDFGetting information about the fate of immobilized enzymes and the evolution of their environment during turnover is a mandatory step toward bioelectrode optimization for effective use in biodevices. We demonstrate here the proof-of-principle visual characterization of the reactivity at an enzymatic electrode thanks to fluorescence confocal laser scanning microscopy (FCLSM) implemented in situ during the electrochemical experiment. The enzymatic O reduction involves proton-coupled electron transfers.
View Article and Find Full Text PDFA precisely localized enzyme cascade was constructed by integrating two sequential enzymes, glucoamylase (GA) and glucose oxidase (GOx), on a yeast cell surface through an a-agglutinin receptor as the anchoring motif with cohesin-dockerin interaction. The overall catalytic activities of the combinant strains were significantly dependent on the assembly method, enzyme molecular size, enzyme order, and enzyme stoichiometry. The combinant strain with GA-DocC initially bound scaffoldin prior to GOx-DocT exhibited a higher overall reaction rate.
View Article and Find Full Text PDFMulticopper oxidases (MCOs) catalyze the oxidation of a variety of substrates while reducing oxygen into water through four copper atoms. As an additional feature, some MCOs display an enhanced activity in solution in the presence of Cu. This is the case of the hyperthermophilic laccase HB27 from , the physiologic role of which is unknown.
View Article and Find Full Text PDFCytochrome oxidases (COs) are the terminal enzymes in energy-converting chains of microorganisms, where they reduce oxygen into water. Their affinity for O makes them attractive biocatalysts for technological devices in which O concentration is limited, but the high overpotentials they display on electrodes severely limit their applicative use. Here, the CO of the acidophilic bacterium is studied on various carbon materials by direct protein electrochemistry and mediated one with redox mediators either diffusing or co-immobilized at the electrode surface.
View Article and Find Full Text PDFThe ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs.
View Article and Find Full Text PDFAn electroactive artificial biofilm has been optimized for the cathodic reduction of fumarate by Shewanella oneidensis. The system is based on the self-assembly of multi-walled carbon nanotubes with bacterial cells in the presence of a c-type cytochrome. The aggregates are then deposited on an electrode to form the electroactive artificial biofilm.
View Article and Find Full Text PDFBilirubin oxidases (BODs) belong to the multi-copper oxidase (MCO) family and efficiently reduce O at neutral pH and in physiological conditions where chloride concentrations are over 100 mM. BODs were consequently considered to be Cl resistant contrary to laccases. However, there has not been a detailed study on the related effect of chloride and pH on the redox state of immobilized BODs.
View Article and Find Full Text PDFSelf-assembled redox protein nanowires have been exploited as efficient electron shuttles for an oxygen-tolerant hydrogenase. An intra/inter-protein electron transfer chain has been achieved between the iron-sulfur centers of rubredoxin and the FeS cluster of [NiFe] hydrogenases. [NiFe] Hydrogenases entrapped in the intricated matrix of metalloprotein nanowires achieve a stable, mediated bioelectrocatalytic oxidation of H at low-overpotential.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
May 2017
Mononuclear cupredoxins contain a type 1 copper center with a trigonal or tetragonal geometry usually maintained by four ligands, a cystein, two histidines and a methionine. The recent discovery of new members of this family with unusual properties demonstrates, however, the versatility of this class of proteins. Changes in their ligand set lead to drastic variation in their metal site geometry and in the resulting spectroscopic and redox features.
View Article and Find Full Text PDFDue to the lack of a valid approach in the design of electrochemical interfaces modified with enzymes for efficient catalysis, many oxidoreductases are still not addressed by electrochemistry. We report in this work an in-depth study of the interactions between two different bilirubin oxidases, (from the fungus Myrothecium verrucaria and from the bacterium Bacillus pumilus), catalysts of oxygen reduction, and carbon nanotubes bearing various surface charges (pristine, carboxylic-, and pyrene-methylamine-functionalized). The surface charges and dipole moment of the enzymes as well as the surface state of the nanomaterials are characterized as a function of pH.
View Article and Find Full Text PDFFor the first time, gold nanoparticle-based electrodes have been used as platforms for efficient immobilization of the [NiFe] hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. AuNPs were characterized by electronic microscopy, dynamic light scattering and UV-Vis spectroscopy. Two sizes around 20.
View Article and Find Full Text PDFA biocathode was designed by the modification of a carbon nanotube (CNT) gas-diffusion electrode with bilirubin oxidase from Bacillus pumilus, achieving high current densities up to 3 mA cm(-2) for the reduction of O2 from air. A membraneless air-breathing hydrogen biofuel cell was designed by combination of this cathode with a functionalized CNT-based hydrogenase anode.
View Article and Find Full Text PDFKnowledge of the behaviour of bacterial communities is crucial for understanding biogeochemical cycles and developing environmental biotechnology. Here we demonstrate the formation of an artificial consortium between two anaerobic bacteria, Clostridium acetobutylicum (Gram-positive) and Desulfovibrio vulgaris Hildenborough (Gram-negative, sulfate-reducing) in which physical interactions between the two partners induce emergent properties. Molecular and cellular approaches show that tight cell-cell interactions are associated with an exchange of molecules, including proteins, which allows the growth of one partner (D.
View Article and Find Full Text PDF