Key Points: WWP2 expression is elevated in the tubulointerstitium of fibrotic kidneys and contributes to CKD pathogenesis and progression. WWP2 uncouples the profibrotic activation and cell proliferation in renal myofibroblasts. WWP2 controls mitochondrial respiration in renal myofibroblasts through the metabolic regulator peroxisome proliferator-activated receptor gamma coactivator 1-alpha.
View Article and Find Full Text PDFNon-ischemic cardiomyopathy (NICM) can cause left ventricular dysfunction through interstitial fibrosis, which corresponds to the failure of cardiac tissue remodeling. Recent evidence implicates monocytes/macrophages in the etiopathology of cardiac fibrosis, but giving their heterogeneity and the antagonizing roles of macrophage subtypes in fibrosis, targeting these cells has been challenging. Here we focus on WWP2, an E3 ubiquitin ligase that acts as a positive genetic regulator of human and murine cardiac fibrosis, and show that myeloid specific deletion of WWP2 reduces cardiac fibrosis in hypertension-induced NICM.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFCardiac fibrosis is a final common pathology in inherited and acquired heart diseases that causes cardiac electrical and pump failure. Here, we use systems genetics to identify a pro-fibrotic gene network in the diseased heart and show that this network is regulated by the E3 ubiquitin ligase WWP2, specifically by the WWP2-N terminal isoform. Importantly, the WWP2-regulated pro-fibrotic gene network is conserved across different cardiac diseases characterized by fibrosis: human and murine dilated cardiomyopathy and repaired tetralogy of Fallot.
View Article and Find Full Text PDF