Hereditary haemorrhagic telangiectasia (HHT) causes arteriovenous malformations (AVMs) in multiple organs to cause bleeding, neurological and other complications. HHT is caused by mutations in the BMP co-receptor endoglin. We characterised a range of vascular phenotypes in embryonic and adult endoglin mutant zebrafish and the effect of inhibiting different pathways downstream of Vegf signalling.
View Article and Find Full Text PDFGlial cells are the support cells of the nervous system. Glial cells typically have elaborate morphologies that facilitate close contacts with neighboring neurons, synapses, and the vasculature. In the retina, Müller glia (MG) are the principal glial cell type that supports neuronal function by providing a myriad of supportive functions via intricate cell morphologies and precise contacts.
View Article and Find Full Text PDFCell morphology is crucial for all cell functions. This is particularly true for glial cells as they rely on complex shape to contact and support neurons. However, methods to quantify complex glial cell shape accurately and reproducibly are lacking.
View Article and Find Full Text PDFWith advancements in imaging techniques, data visualization allows new insights into fundamental biological processes of development and disease. However, although biomedical science is heavily reliant on imaging data, interpretation of datasets is still often based on subjective visual assessment rather than rigorous quantitation. This overview presents steps to validate image processing and segmentation using the zebrafish brain vasculature data acquired with light sheet fluorescence microscopy as a use case.
View Article and Find Full Text PDFWith an increase in subject knowledge expertise required to solve specific biological questions, experts from different fields need to collaborate to address increasingly complex issues. To successfully collaborate, everyone involved in the collaboration must take steps to "". We thus present a guide on truly cross-disciplinary work using bioimage analysis as a showcase, where it is required that the expertise of biologists, microscopists, data analysts, clinicians, engineers, and physicists meet.
View Article and Find Full Text PDFZebrafish transgenic lines and light sheet fluorescence microscopy allow in-depth insights into three-dimensional vascular development in vivo. However, quantification of the zebrafish cerebral vasculature in 3D remains highly challenging. Here, we describe and test an image analysis workflow for 3D quantification of the total or regional zebrafish brain vasculature, called zebrafish vasculature quantification (ZVQ).
View Article and Find Full Text PDFIn this Spotlight, we hear first-hand accounts from five scientists and educators who use microscopy and imaging to engage, entertain, educate and inspire new audiences with science and the field of developmental biology in particular. The 'voices' that follow each convey each authors' own personal take on why microscopy is such a powerful tool for capturing the minds, and the hearts, of scientists, students and the public alike. They discuss how microscopy and imaging can reveal new worlds, and improve our communication and understanding of developmental biology, as well as break down barriers and promote diversity for future generations of scientific researchers.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2021
The neurovascular unit (NVU) is a complex multi-cellular structure consisting of endothelial cells (ECs), neurons, glia, smooth muscle cells (SMCs), and pericytes. Each component is closely linked to each other, establishing a structural and functional unit, regulating central nervous system (CNS) blood flow and energy metabolism as well as forming the blood-brain barrier (BBB) and inner blood-retina barrier (BRB). As the name suggests, the "neuro" and "vascular" components of the NVU are well recognized and neurovascular coupling is the key function of the NVU.
View Article and Find Full Text PDFThe role of blood flow in vascular development is complex and context-dependent. In this study, we quantify the effect of the lack of blood flow on embryonic vascular development on two vascular beds, namely the cerebral and trunk vasculature in zebrafish. We perform this by analysing vascular topology, endothelial cell (EC) number, EC distribution, apoptosis, and inflammatory response in animals with normal blood flow or absent blood flow.
View Article and Find Full Text PDFThe cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature.
View Article and Find Full Text PDFWe identify a novel endothelial membrane behaviour in transgenic zebrafish. Cerebral blood vessels extrude large transient spherical structures that persist for an average of 23 min before regressing into the parent vessel. We term these structures "kugeln", after the German for sphere.
View Article and Find Full Text PDFZebrafish have become an established vertebrate model to study cardiovascular development and disease. However, most published studies of the zebrafish vascular architecture rely on subjective visual assessment, rather than objective quantification. In this paper, we used state-of-the-art light sheet fluorescence microscopy to visualize the vasculature in transgenic fluorescent reporter zebrafish.
View Article and Find Full Text PDFNeurovascular coupling (through which local cerebral blood flow changes in response to neural activation are mediated) is impaired in many diseases including diabetes. Current preclinical rodent models of neurovascular coupling rely on invasive surgery and instrumentation, but transgenic zebrafish coupled with advances in imaging techniques allow non-invasive quantification of cerebrovascular anatomy, neural activation, and cerebral vessel haemodynamics. We therefore established a novel non-invasive, non-anaesthetised zebrafish larval model of neurovascular coupling, in which visual stimulus evokes neuronal activation in the optic tectum that is associated with a specific increase in red blood cell speed in tectal blood vessels.
View Article and Find Full Text PDFUnlabelled: The significance and function of posttranscriptional cytosine methylation in poly(A)RNA attracts great interest but is still poorly understood. High-throughput sequencing of RNA treated with bisulfite (RNA-BSseq) or subjected to enrichment techniques like Aza-IP or miCLIP enables transcriptome wide studies of this particular modification at single base pair resolution. However, to date, there are no specialized software tools available for the analysis of RNA-BSseq or Aza-IP data.
View Article and Find Full Text PDF