Publications by authors named "Elisabeth Fitz"

The electron beam irradiation (EBI) of native lignin has received little attention. Thus, its potential use in lignin-based biorefineries is not fully understood. EBI was applied to selected lignin samples and the structural and chemical changes were analyzed, revealing the suitability, limitations, and potential purpose of EBI in wood biorefineries.

View Article and Find Full Text PDF

Electron beam irradiation (EBI) is an alternative treatment for intrinsic viscosity (IV) control in cellulose pulps, but has never been integrated in full bleaching sequences for comparison to conventional methods. Both eucalyptus kraft (EK) paper pulp and beech sulfite (BS) dissolving pulp were subjected to totally chlorine free (TCF) bleaching sequences comprising either EBI, ozone, or both for IV control. Additionally, effects of EBI on hexenuronic acid (HexA) and xylan were investigated.

View Article and Find Full Text PDF

Background: Cellobiose dehydrogenase from Phanerochaete chrysosporium (PcCDH) is a key enzyme in lignocellulose depolymerization, biosensors and biofuel cells. For these applications, it should retain important molecular and catalytic properties when recombinantly expressed. While homologous expression is time-consuming and the prokaryote Escherichia coli is not suitable for expression of the two-domain flavocytochrome, the yeast Pichia pastoris is hyperglycosylating the enzyme.

View Article and Find Full Text PDF

Background: is widely known for its enormous protein secretion capacity and as an industrially relevant producer of cellulases and hemicellulases. Over the last decades, rational strain engineering was applied to further enhance homologous and heterologous enzyme yields. The introduction of hyperbranching is believed to increase protein secretion, since most exocytosis is located at the hyphal apical tip.

View Article and Find Full Text PDF

The ascomycete is one of the main fungal producers of cellulases and xylanases based on its high production capacity. Its enzymes are applied in food, feed, and textile industry or in lignocellulose hydrolysis in biofuel and biorefinery industry. Over the last years, the demand to expand the molecular toolbox for to facilitate genetic engineering and improve the production of heterologous proteins grew.

View Article and Find Full Text PDF