Publications by authors named "Elisabeth Eitenberger"

We present a novel approach for the separation and recovery of Pt and Pd leached from a spent automotive catalyst relying on conventional and polymerized supported ionic liquid phases (SILPs and polySILPs, respectively). A variety of parameters with possible effects on the separation behavior, namely, acidity and concentration of the platinum group metal (PGM) containing solution, as well as different SILP and polySILP loadings, were evaluated for the separation of PGMs in the presence of high concentrations of Al, Fe, Zn, and Ce. The polySILP material demonstrated the ability to separate the PGMs from major accompanying interferences in a single separation step, while problems arising from ionic liquid leaching in the case of SILPs could be avoided.

View Article and Find Full Text PDF

The thermochemical energy-storage material couple CuSO/[Cu(NH)]SO combines full reversibility, application in a medium temperature interval (<350 °C), and fast liberation of stored heat. During reaction with ammonia, a large change in the sulfate solid-state structure occurs, resulting in a 2.6-fold expansion of the bulk material due to NH uptake.

View Article and Find Full Text PDF

Thermochemical energy storage is considered as an auspicious method for the recycling of medium-temperature waste heat. The reaction couple Mg(OH)₂⁻MgO is intensely investigated for this purpose, suffering so far from limited cycle stability. To overcome this issue, Mg(OH)₂, MgCO₃, and MgC₂O₄·2H₂O were compared as precursor materials for MgO production.

View Article and Find Full Text PDF

Background: The bacterium E. coli is a major host for recombinant protein production of non-glycosylated products. Depending on the expression strategy, the recombinant protein can be located intracellularly.

View Article and Find Full Text PDF

Chemical imaging is a powerful tool for understanding the chemical composition and nature of heterogeneous samples. Recent developments in elemental, vibrational, and mass-spectrometric chemical imaging with high spatial resolution (50-200 nm) and reasonable timescale (a few hours) are capable of providing complementary chemical information about various samples. However, a single technique is insufficient to provide a comprehensive understanding of chemically complex materials.

View Article and Find Full Text PDF

The chemometric analysis of multisensor hyperspectral data allows a comprehensive image-based analysis of precipitated atmospheric particles. Atmospheric particulate matter was precipitated on aluminum foils and analyzed by Raman microspectroscopy and subsequently by electron microscopy and energy dispersive X-ray spectroscopy. All obtained images were of the same spot of an area of 100 × 100 μm(2).

View Article and Find Full Text PDF