Ligand-based in silico hERG models were generated for 2 644 compounds using linear discriminant analysis (LDA) and support vector machines (SVM). As a result, the dataset used for the model generation is the largest publicly available (see Supporting Information). Extended connectivity fingerprints (ECFPs) and functional class fingerprints (FCFPs) were used to describe chemical space.
View Article and Find Full Text PDFUntil now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A(1), A(2A), A(2B) and A(3) receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body and involved in a variety of physiological processes and diseases, there is great interest in understanding how the different subtypes are regulated, as a basis for designing therapeutic drugs that either avoid or make use of this regulation.
View Article and Find Full Text PDFTo study the effect of allosteric modulators on the internalization of human adenosine A(1) receptors, the receptor was equipped with a C-terminal yellow fluorescent protein tag. The introduction of this tag did not affect the radioligand binding properties of the receptor. CHO cells stably expressing this receptor were subjected during 16 h to varying concentrations of the agonist N(6)-cyclopentyladenosine (CPA) in the absence or presence of 10 microM of the allosteric enhancer PD 81,723 ((2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluoromethyl)phenyl]methanone) or the allosteric inhibitor SCH-202676 (N-(2,3-diphenyl-1,2,4-thiadiazol-5(2H)-ylidene)methanamine).
View Article and Find Full Text PDFFour subtypes of adenosine receptors are currently known, that is, A(1), A(2A), A(2B), and A(3) receptors. Interestingly, quite substantial species differences exist especially between human and rat A(3) receptors. As a result, ligands such as CCPA, which are very selective for the rat A(1) receptor versus the human A(3) receptor, are substantially less selective when the human A(1) and A(3) receptors are compared.
View Article and Find Full Text PDF